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Abstract: : Principal Component Analysis (known briefly as PCA) is a multivariate statistical technique 
for simplifying a cloud data set [1, 2]. Based on this procedure the observable possibly correlated 
properties are reported into a few uncorrelated “attributes”; in other words it is considered a 
transformation from a space into a subspace such that the retained variance of the original cloud is 
“maximal” by this new representation [3, 4]. In a previous paper [7] we applied the so called the 
Jöreskog' technique used for the dimensional reduction in a bivariate subspace. The goal of this paper is 
to apply the Pearson method of PCA, for the same family of materials, using the XLSTAT 2009 software; 
new relevant factors are obtained, and the results are comparable. 
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1. INTRODUCTION  
 

 The Pearson’s method minimizes redundancy, 
measured by correlations, and maximizes the signal, 
measures by variance. The procedure is based in part on 
an iterative algorithm. The technique begins by finding a 
normalized direction along which the variance is 
maximized. Next it is find the second direction along 
which the remains variance is maximized, under 
restricting the search to all directions perpendicular to 
previous selected directions. This iterative procedure is 
repeated until it is obtained all vectors. 
 
2. AN APPLICATION OF PCA BASED ON 

PEARSON’S TECHNIQUE  
 

Principal component analysis is a standard technique 
to reduce multivariate data sets to lower dimensions [5]. 
The number of observable attributes gives the dimension  
of the initial vector space of the objects. The PCA model 
represents the objects in view in a strictly subspace [6]. 

Instead of real attributes, the PCA proposes new 
factors, but artificial ones, so that the subspace yields the 
minimum deformation of the original cloud. In the 

present paper the dimensional reduction for a family of 
materials (Table 1), uses the Pearson's method [7, 8]. 

Let us consider X as a 6 × 9 dimensional matrix, 
attributes/materials constructed for the first six attributes 
from Table 1 [7]:  
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The standardized matrix associated with X is: 
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Table 1 
Properties and materials for sliding bearing [7] 

 

Materials Alloys on the 
basis of 

Bronze 
on the basis of 

Aluminum 
Alloys 

Porous sintered 
bearings 

Plastics Artificial 
carbon 

Properties Lead Tin Lead Tin Al     
Sliding properties 1 2 3 3 3 2.5 3.5 4 4 

Embeddability 1 2 3 3 3 2.5 3 4 5 
Emergency running 
(antifrictionnal) 
properties 

1 2 2 3 2 2 1 1 1 

Loadability 4 3 2 2 2 2 3 4 5 
Heat conduction 
/thermal expansion 

4 4 3 3 3 2 4 5 5 

Corrosion resistance 5 3 4 3 2 2 3.5 3 2 
Minimal or dry 
lubrication 

2 3 4 5 4 3 1 1 1 
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Table 2 
Summary statistics Principal Component Analysis (PCA) (Tables 3−8 and Figs. 1, 3 and 4) 

 

 
XLSTAT 2009.2.03 – Principal Component Analysis (PCA) PCA type: Pearson (n) 

Type of biplot: Correlation biplot / Coefficient = Automatic Summary statistics: 
 

Var Obs Obs. with 
missing data 

Obs. without 
missing data 

Min. Max Mean Std. Dev. 

Var1 9 0 9 1.000 4.000 2.889 0.961 

Var2 9 0 9 1.000 5.000 2.944 1.130 

Var3 9 0 9 1.000 3.000 1.667 0.707 

Var4 9 0 9 2.000 5.000 3.000 1.118 

Var5 9 0 9 2.000 5.000 3.667 1.000 

Var6 9 0 9 2.000 5.000 3.056 1.014 

 
Using the matrix equation  
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which is the correlation matrix. The proximity between 
attributes is expressed in terms of correlations. 

XLSTAT is a Microsoft Excel, add-in that has been 
developed since 1993, to enhance the analytical 
capabilities of Excel. XLSTAT relies on Excel for the 
input of data and the display of results, but the 
computations are done using autonomous software 
components. Main product of the company Addinsoft  
(www.xlstat.com) from the applications XLSTAT group 
is XLSTAT-Pro, with the most important features: 
PREPARING DATA; DESCRIBING DATA (with the 
PCA application); ANALYZING DATA; 
VISUALIZING DATA; MODELING DATA AND 
FORECASTING; CORRELATION AND 
ASSOCIATION TESTS; PARAMETRIC TESTS; NON 
PARAMETRIC TESTS. 

We applied the version 2.03 of this software and the 
obtained results are recorded bellow: 

 
Table 3 

Correlation matrix  
 

Correlation matrix  (Pearson(n)): 
Var. Var1 Var2 Var3 Var4 Var5 Var6 

Var1 1 0.943 -0.153 0.175 0.347 -0.538 

Var2 0.943 1 -0.182 0.346 0.424 -0.597 

Var3 -0.153 -0.182 1 -0.791 -0.707 -0.232 

Var4 0.175 0.346 -0.791 1 0.894 0.110 

Var5 0.347 0.424 -0.707 0.894 1 0.144 

Var6 -0.538 -0.597 -0.232 0.110 0.144 1 

 
Table 4 

Eigenvalues of the components 
 

Principal Component Analysis: 

Eigenvalues: 

  F1 F2 F3 F4 F5 F6 

Eigenvalue 3.045 2.134 0.429 0.296 0.087 0.009 

Variability (%) 50.754 35.573 7.142 4.930 1.455 0.146 

Cumulative % 50.754 86.327 93.468 98.398 99.854 100.000 

 

 
 

Fig. 1. Pareto type scree plot. 
Table 5 

Eigenvectors of the components 
 

 F1 F2 F3 F4 F5 F6 
Var1 0.389 -0.446 0.469 -0.221 0.197 -0.585 
Var2 0.435 -0.422 0.205 0.059 -0.491 0.588 
Var3 -0.411 -0.366 0.183 0.791 -0.089 -0.175 
Var4 0.477 0.314 -0.324 0.307 -0.506 -0.468 
Var5 0.498 0.254 0.103 0.478 0.622 0.249 
Var6 -0.122 0.571 0.767 -0.003 -0.265 0.011 

 
Table 6 

Factor loadings of the components 
 

 

 F1 F2 F3 F4 F5 F6 

Var1 0.678 -0.652 0.307 -0.120 0.058 -0.055 

Var2 0.760 -0.616 0.134 0.032 -0.145 0.055 

Var3 -0.717 -0.535 0.120 0.430 -0.026 -0.016 

Var4 0.832 0.458 -0.212 0.167 -0.149 -0.044 

Var5 0.869 0.371 0.067 0.260 0.184 0.023 

Var6 -0.213 0.834 0.502 -0.002 -0.078 0.001 

 

http://www.xlstat.com/


337 

 
 

Fig. 2. Correlation circle. 
 

The reduction is possible because the initial 
properties are related. The degree of correlations between 
the initial attributes and a few principal componenets is 
graphicaly described with the help of so-called 
correlation circle (Fig. 2). This map shows a projection 
of the initial variables in the factors space. 

In the Table 8 the contribution of the variables (%) 
are given. Table 9 represents squared cosines of the 
variables. 

There is no point in evaluating the number of PCs 
before. For the analysed data the first two PCs  account 
for cca. 90% of the variance for the first five variables, 
meanwhile F2 and F3 explain approximatively 90% of the 
variance for the sixth variable. 

In the Pearson’s method, each sample is considered 
as a point in the 6-dimensional space. Sample projections 
are called scores, variable projections are called loading. 
Table 10 contains coordinates of each object  in the new  
6-dimensional space, the complete principal components 
space.  

Table 7 
Correlations between variables and factors 

 

  F1 F2 F3 F4 F5 F6 

Var1 0.678 -0.652 0.307 -0.120 0.058 -0.055 

Var2 0.760 -0.616 0.134 0.032 -0.145 0.055 

Var3 -0.717 -0.535 0.120 0.430 -0.026 -0.016 

Var4 0.832 0.458 -0.212 0.167 -0.149 -0.044 

Var5 0.869 0.371 0.067 0.260 0.184 0.023 

Var6 -0.213 0.834 0.502 -0.002 -0.078 0.001 

 
Table 8 

Contribution of the variables (%) 
 

  F1 F2 F3 F4 F5 F6 

Var1 15.116 19.889 22.029 4.868 3.865 34.232 

Var2 18.962 17.777 4.212 0.346 24.103 34.602 

Var3 16.869 13.403 3.34 62.523 0.79 3.074 

Var4 22.747 9.847 10.494 9.442 25.576 21.895 

Var5 24.819 6.459 1.059 22.82 38.659 6.183 

Var6 1.487 32.626 58.867 0.001 7.006 0.013 

 

Table 9 
Squared cosines of the variables 

 

Squared cosines of the variables: 
  F1 F2 F3 F4 F5 F6 

Var1 0.46 0.425 0.094 0.014 0.003 0.003 

Var2 0.577 0.379 0.018 0.001 0.021 0.003 

Var3 0.514 0.286 0.014 0.185 0.001 0 

Var4 0.693 0.21 0.045 0.028 0.022 0.002 

Var5 0.756 0.138 0.005 0.068 0.034 0.001 

Var6 0.045 0.696 0.252 0 0.006 0 
 

Table 10 
Factor scores 

 

Factor scores: 
Obs. F1 F2 F3 F4 F5 F6 

Obs1 -0.814 3.615 -0.246 0.015 -0.224 -0.011 

Obs2 -0.789 0.685 -0.559 0.729 0.433 0.052 

Obs3 -1.06 -0.173 1.152 -0.261 -0.267 0.151 

Obs4 -1.549 -1.319 0.624 0.928 -0.124 -0.124 

Obs5 -0.805 -1.368 -0.453 -0.254 0.287 0.127 

Obs6 -1.752 -1.194 -0.918 -0.667 -0.251 -0.09 

Obs7 0.815 0.399 0.538 -0.769 0.293 -0.095 

Obs8 2.483 0.026 0.39 -0.036 0.259 -0.052 

Obs9 3.472 -0.67 -0.528 0.314 -0.405 0.044 

 

 
Fig. 3. Observations grouping on the factors axes. 

 
Fig. 4. Biplot graph. 
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Table 11 
Contribution of the observations 

 

Contribution of the observations (%): 
  F1 F2 F3 F4 F5 F6 

Obs1 2.416 68.015 1.565 0.009 6.364 0.151 

Obs2 2.274 2.441 8.107 19.951 23.853 3.463 

Obs3 4.101 0.155 34.429 2.565 9.096 28.74 

Obs4 8.751 9.063 10.087 32.372 1.949 19.588 

Obs5 2.365 9.741 5.324 2.426 10.445 20.34 

Obs6 11.204 7.416 21.831 16.693 8.025 10.295 

Obs7 2.424 0.828 7.496 22.222 10.898 11.526 

Obs8 22.493 0.003 3.938 0.048 8.513 3.484 

Obs9 43.972 2.337 7.223 3.714 20.857 2.412 

 
 

Table 12 
Squared cosines of the observations 

 

Squared cosines of the observations: 

  F1 F2 F3 F4 F5 F6 

Obs1 0.048 0.944 0.004 0 0.004 0 

Obs2 0.293 0.221 0.147 0.25 0.088 0.001 

Obs3 0.425 0.011 0.502 0.026 0.027 0.009 

Obs4 0.442 0.321 0.072 0.159 0.003 0.003 

Obs5 0.224 0.648 0.071 0.022 0.028 0.006 

Obs6 0.525 0.243 0.144 0.076 0.011 0.001 

Obs7 0.369 0.088 0.161 0.329 0.048 0.005 

Obs8 0.965 0 0.024 0 0.01 0 

Obs9 0.924 0.034 0.021 0.008 0.013 0 

 
The chart 3 allows visualizing and analyzes the 

observations, initially described by the 6 properties, on a 
2-dimensional map, the optimal view for a variability 
criterion.  

The biplot allows information on both samples and 
variables of a data matrix to be displayed graphically. 
Samples are displayed as points while variables are 
displayed either as vectors, linear axes or nonlinear 
trajectories.  

In Table 11 are given the contribution of the 
observations (%). 

Next the Table 12 represents squared cosines of the 
observations. 

The explained validated variance is 86 % using 2 
PCs. The two PCs of Joreskog technique explains about 
95% of the variance, while the Pearson’s procedure 
needed 3 PCs to explain the same variance.  
 
3. CONCLUSIONS 
 

Using PCA it is possible to describe a range of 
different materials in terms of principal attributes, which 
describe the relevant informations for the design. A 
possibility to reduce the number of attributes of materials 

in the design is the PCA model, based on Pearson’ 
method. 

In the present research it is used an artificial subspace 
with 2, respective 3 dimensions for the considerate range 
of materials. The real attributes of each object can be 
expressed with a good precision as function of artificial 
axes. The Pearson’ method of PCA, which obtaints a few 
relevant factors from data sets, uses the XLSTAT 2009 
software. 

The application of this model will simplifies the 
materials design and there are many other possible 
extensions in the design process. Further more, a 
comparison between Jöreskog' and Pearson’ method is 
presented for future developments.  
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