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Abstract: The identification of the control parameter effects on location (mean) and dispersion (varia-
tion) of the observed product quality characteristic (response) is the crucial issue in industrial experi-
ments, for improving manufacturing process robustness. This paper discuss the use of the Taguchi's ro-
bust parameter design method for the optimisation a single-response system -  automatic enamelling 
process in the cookware processing technology, for the product quality improvement. The analysis of ex-
perimental results was performed using location and dispersion modelling. The results were compared 
with the results of the commonly-used ANOVA analysis, and it showed the importance and effectiveness 
of the location and dispersion modelling approach in revealing significant effects of the control parame-
ters and interactions on the response mean and variation.  
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1. INTRODUCTION  
  

The engineering and statistical analysis of the manu-
facturing process automatic enamelling indicated certain 
problems regarding product quality characteristic − base 
enamel thickness and showed the necessity for process 
optimisation. The experiment was conducted in order to 
improve single-response system (automatic enamelling 
process) robustness, particularly to achieve the target 
base enamelling mean value and reduce its variation [1, 
2]. 

The design of the experiment was performed by using 
orthogonal array, in order to reduce number of experi-
mental trials. The previous analysis of experimental data 
was based on ANOVA method.  

In this paper, the new approach for the analysis (loca-
tion and dispersion modelling) was adopted to clarify the 
significance of control factors and interactions on the 
response mean and variation. Its application on the ob-
served problem showed that this method is a useful and 
economical mean for the identification of all significant 
location and dispersion effects, but also showed more 
sensitivity for discovering interaction effects than the 
commonly-used ANOVA method. 
 
2. DESIGN OF EXPERIMENT 
  

In order to minimise the number of trials required in 
the experiment, Taguchi’s method of experimental de-
sign was adopted for the process optimisation. Taguchi 
developed a family of fractional factorial experiments 
arrays, to reduce the experimental number but still obtain 
reasonably rich information, with certain statistical level 
of confidence.  

In Taguchi's methodology, all factors affecting the 
process quality can be divided into two types: control 
factors and noise factors. Control factors are those set by 
the manufacturer and are easily adjustable.  

Noise factors, on the other hand, are those undesired 
variables that are difficult or impossible to control, such 
as the ambient temperature, humidity and ageing of parts. 

The major steps of implementing the Taguchi’s 
method, followed in this experiment, are [3]:  
• identify the control factors/interactions,  
• identify the levels of each factor,  
• select an appropriate orthogonal array (OA),  
• assign the factors/interactions to columns of the OA,  
• conduct the experiments,  
• analyse the data and determine the optimal levels, and  
• conduct the confirmation experiment.  

Control parameters (factors) and interaction that were 
identified as critical for base enamelling process were:  
• enamel parameters: specific weight (SW) and deposit 

weight (DW), and interaction SW·DW; 
• process parameters: pouring speed (PS) and automat 

speed (AS), and interaction PS·AS. 
These four control factors were used as design pa-

rameters in the experiment and studied at two levels.  
Table 1 illustrates the list of design parameters - con-

trol factors and their levels selected for the experiment.  
Design of the experiment was performed using Ta-

guchi orthogonal technique, by orthogonal array L16, 
giving sixteen trials in the experiment (Table 2.) to ac-
commodate four control factors and two interactions, 
studied at two levels [4]. 

Table 1 
Design parameters / control factors and levels 

used for the experiment 
Level Design parameter / 

Control factor Label Unit 
−1 +1 

Specific weight SW gram cm-3 8 11 

Deposit weight DW gram cm-3 1.68 1.70 

Pouring speed PS turns min-1 0 3 

Automat speed AS parts min-1 5 9 
 
 



384 
 

Table 2 
Plan of the experiment and measuring results [2] 

 

trial 
no.  

SW 
[gram cm-3] 

DW 
[gram cm-3] 

PS 
[turns min-1] 

AS 
[parts min-1] 

Enamel thickness 
Mean [µm] 

Enamel thickness    
St. Deviation [µm] 

1 8 1,68 0 5 73.52 4.04269 
2 8 1.68 0 9 73.52 4.04269 
3 11 1.70 3 5 102.20 6.60177 
4 11 1.70 3 9 108.64 7.45475 
5 8 1.68 3 5 81.56 4.55595 
6 8 1.68 3 9 80.44 5.69415 
7 11 1.70 0 5 94.60 5.43139 
8 11 1.70 0 9 101.56 4.36921 
9 8 1.70 3 5 89.68 5.90000 
10 8 1.70 3 9 84.68 7.22680 
11 11 1.68 0 5 91.16 4.93018 
12 11 1.68 0 9 78.80 4.50000 
13 8 1.70 0 5 89.56 5.26846 
14 8 1.70 0 9 77.08 3.21351 
15 11 1.68 3 5 91.72 3.88930 
16 11 1.68 3 9 85.48 5.17301 

 
 
For each trial, base enamel thickness was measured 

on five parts, and then mean and standard deviation was 
calculated (Table 2.). Specification limits for base 
enamel thickness are LSL ÷ USL = 80 ÷ 120 µm, the 
target base enamel thickness is 95 µm [1].  
  
3. EXPERIMENTAL ANALYSIS 
  

Unlike most other experimental design methods, Ta-
guchi’s technique allows us to study the variation of 
process and ultimately to optimise the process variability, 
as well as target, using Signal-to-Noise ratio (SNR). SNR 
evaluates both mean and variation of process together. It 
presents ratio between response mean (control factors 
effect) and variation (noise or uncontrollable factors ef-
fect). It shows the process robustness against noise fac-
tors [5]. 

Noise factors were not included in the design of the 
observed experiment; they were considered as unknown. 
However, considering the sensitivity of the automatic 
enamelling process to the environmental variation, it is 
expected that humidity, temperature and dust level in the 
manufacturing environment can affect the final product 
quality characteristic – enamel thickness. Since in current 
circumstances it is impossible to control the mentioned 
noise factors, it has been decided to employ parameter 
design methodology to make the process and product less 
sensitive to the variation.  

The desired response is nominal (target) enamel 
thickness, so SNR value for each trial, was calculated 
according to the formula: 
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σ
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where µ is response mean value and σ is response stan-
dard deviation. 

To analyse the data resulting from conducting a ro-
bust parameter design, Taguchi suggested using different 
signal-to-noise ratios (SNR) for different types of data. 
Since the measurement of SNR takes both mean and 
variation into consideration, the analysis of SN ratio 
seems better than the traditional analysis of variance. 

However, many statisticians criticized its usefulness and 
correctness and proposed some alternative methods [6]. 

In order to avoid possible contradictions, in the fol-
lowing ANOVA analysis both standard deviation and 
SNR will be analysed, together with the mean response 
value. 
 
3.1. ANOVA 

Analysis of the results was first performed using 
Analysis of Variance (ANOVA), considering following 
response model [2]: 
  

 
ASPSaASaPSa

DWSWaDWaSWaaY
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,2,1,2,1,0 . (2) 

 
where a0,i, a1,i, a2,i, a1,2,i, a3,i , a4,i, a3,4,i are coefficients, Yi 
(i = 1, ..., 3) are: Y1=MEAN (enamel thickness mean), 
Y2=STDEV (enamel thickness standard deviation), 
Y3=SNR (enamel thickness Signal-to-Noise ratio). 

Tables 3a, 3b and 3c present ANOVA tables for 
MEAN, STDEV and SNR, respectively. With the level 
of significance α = 0.05, significant factors for MEAN 
are SW, DW and PS; for STDEV significant factors are 
DW and PS and interaction PS·AS; factor PS and interac-
tion PS·AS are significant for SNR. 

Analysis of the ANOVA tables and belonging inter-
action plots of all control factors and their interactions 
for responses MEAN, STDEV and SNR resulted in fol-
lowing conclusions [1, 2]: 

• in order to achieve maximal SNR value, optimal fac-
tors setting is: PS = 0;  AS = 9;  

• optimal factor setting for minimisation of STDEV is: 
DW = 1.68; PS = 0; AS = 9;  

• in order to achieve target value for MEAN (95 um), 
the optimal factors setting is: DW = 1.70; SW = 11; 
PS = 0.  
Considering the fact that the most important goal is to 

achieve the target value for MEAN (95 µm), factor DW 
will be set to value 1.70. Thus, the adopted optimal fac-
tors setting from ANOVA analysis is:  
DW = 1.70; SW = 11; PS = 0; AS = 9. 
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Table 3a 
ANOVA for MEAN vs. SW, DW, PS and AS [2] 

 

Source DF Seq SS Adj SS Adj MS F P 
SW 1 677.56 677.561    677.561    30.34    0.000 
DW 1 526.70 526.702    526.702    23.59    0.001 
PS 1 124.32     124.323    124.323    5.57    0.043 
AS 1 35.40       35.403      35.403      1.59    0.240 

SW·DW 1 48.58       48.581      48.581      2.18    0.174 
PS·AS     1 8.94        8.940        8.940        0.40    0.543 

Res.Err.    9 200.98     200.979     22.331   
Total 15 1622.49 1622.49    

 
Table 3b 

ANOVA for STDEV vs. SW, DW, PS and AS [2] 
 

Source DF Seq SS Adj SS Adj MS F P 
SW 1 0.3616 0.3616 0.3616 0.62 0.451 
DW 1 4.6634     4.6633 4.6633 8.01 0.020 
PS 1 7.1524     7.1524 7.1524 12.29    0.007 
AS 1 0.0695     0.0694 0.0694 0.12 0.738 

SW·DW 1 0.2734     0.2733 0.2733 0.47 0.510 
PS·AS     1 4.1504     4.1504 4.1504 7.13 0.026 

Res.Err.    9 5.2386     5.2386 0.58207   
Total 15 21.9092 21.9092    

 
Table 3c 

ANOVA for SNR vs. SW, DW, PS and AS [2] 
 

Source DF Seq SS Adj SS Adj MS F P 
SW 1 1.9340 1.934 1.934 1.02    0.340 
DW 1 1.0167      1.0167 1.0167 0.53    0.483 
PS 1 10.5539    10.553 10.553 5.55    0.043 
AS 1 0.5280      0.5280      0.5280      0.28    0.611 

SW·DW 1 0.1559      0.1559 0.1559 0.08    0.781 
PS·AS     1 10.4915    10.491 10.491 5.51    0.043 

Res.Err.    9 17.1259    17.1259 1.9029   
Total 15 41.8060 41.8060    

 
 

3.2. Location and dispersion modelling 

The location and dispersion modelling approach gives 
models for measures of location and dispersion sepa-
rately, in term of control factors and interactions main 
effects on response. Since noise factors were considered 
as unknown and were not included in this experiment, 
here at each control factors setting yi (the sample mean) 
and sample variance are used to present the location and 
dispersion, and calculated as [5]: 
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where ni is number of replicates at for the ith control fac-
tors setting (i = 1, ..., 16). 

In order to model the relationship between the re-
sponse location / dispersion and control factors, half-
normal plots were generated to show the significance of 
the factors and their interactions effects on the response – 
enamel thickness mean and variation. 

The half-normal probability plot is a graphical tool 
that uses these ordered estimated effects to help assess 
which factors are important and which are unimportant. 
A half-normal distribution is the distribution of the |Y| 
with Y having a normal distribution.  

Quantitatively, the estimated effect of a given main 
effect or interaction and its rank relative to other main 

effects and interactions is given via least squares estima-
tion (that is, forming effect estimates that minimize the 
sum of the squared differences between raw data and the 
fitted values from such estimates). Having such estimates 
in hand, one could then construct a list of the main ef-
fects and interactions ordered by the effect magnitude.  

Unimportant factors are those that have near-zero ef-
fects and important factors are those whose effects are 
considerably removed from zero. Thus, unimportant ef-
fects tend to have a normal distribution centred near zero 
while important effects tend to have a normal distribution 
centred at their respective true large (but unknown) effect 
values [7, 8]. For the observed experiment, Fig. 1 pre-
sents half-normal plot for base enamel thickness mean 
(MEAN), where location factors and interactions could 
be discovered. Significant effects of factors SW, DW, PS 
and interaction AS·SW·DW on location were noticed. 

 Interaction between three control factors were not 
considered in ANOVA analysis, so it shows that the half-
normal plots are convenient manner to reveal significant 
effects of factors and all possible interactions in the 
model, on the observed response. According to half-
normal plot of location (MEAN) presented at figure 1, 
regression analysis was performed including all men-
tioned significant effects.  

The obtained regression equitation is: 
 
 

 
.79.202.3
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DWSWMEAN
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⋅+⋅+=
 (4)  
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Fig. 1. Half-normal plot of location effects. 
 

 
 

Fig. 2. Half-normal plot of dispersion effects.  
 

Statistics calculated with respect to the equitation (4) 
are presented in the Table 4.  

The predictors used for this multiple regression are 
control factors and interactions which effects were found 
as significant for the mean value of the observed re-
sponse, from half-normal plot. The coefficients are used 
with the predictors to calculate the fitted value of the 
response. Each predictor in a regression equation has a 
coefficient associated with it.  

In multiple regressions the estimated coefficient 
(Coef) indicates the change in the mean response per unit 
increase in the responding predictor when all other pre-
dictors are held constant.  

If the p-value of a coefficient is less than the chosen 
α-level (α = 0.05), there is evidence of a significant rela-
tionship between the predictor or factor level and the 
response.  
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Table 4 
Statistical parameters of regression equitation for lo-

cation modelling 
 

Predictor  Coef SE Coef T P 
Constant 87.7625   0.9162 95.79 0.000 

SW 6.5075    0.9162 7.10   0.000 
DW 5.7375    0.9162 6.26   0.000 

SW·DW·AS 3.0225    0.9162 3.30   0.007 
PS 2.7875    0.9162 3.04   0.011 

S = 3.66474       R − Sq = 90.9%       R − Sq(adj) = 87.6% 
 

Table 5 
Statistical parameters of regression equitation for 

dispersion modelling 
 

Predictor  Coef SE Coef T P 
Constant 3.22446   0.05828 55.33   0.000 

PS 0.25217   0.05828 4.33   0,001 
PS·AS       0.20448   0.05828 3.51   0.005 
DW 0.18675   0.05828 3.20   0.008 

DW·PS       0.16110   0.05828 2.76   0.018 
S = 0.233118      R − Sq = 81.6%      R − Sq(adj) = 75.0% 

 
In the Table 4, value SE Coef presents standard error 

of the estimated coefficient; the estimated standard de-
viation of the coefficient. Value T is used for comparison 
with the t-distribution to determine if a predictor is sig-
nificant. P-values are usual mean to decide whether the 
predictor is significant or not, depending of α-level. 

Half-normal plot for response dispersion is shown at 
Fig, 2, presented over Ln Sigma2 value. The reason to 
use the natural logarithm of the variance instead of the 
variance, is that it maps positive values to real (both posi-
tive and negative) values, and by taking its inverse trans-
formation, any predicted value on the "ln" scale will be 
transformed back to a positive value on the original 
scale. Also, "ln" transformation converts a possible 
multiplicative relationship into an additive relationship, 
which is much easier to model statistically [5]. 

At the Fig. 2, effects of PS, PS·AS, DW and PS·DW 
can be noticed as significant for the response dispersion, 
thus they were used for regression analysis.  According 
to half-normal plot of dispersion (Ln Sigma2) presented 
at Fig. 2, regression analysis was performed including all 
mentioned significant effects on dispersion. The regres-
sion equation for dispersion effects is: 
 

  (5) 
.6.119.0

2.025.022.32

PSDWDW
ASPSPSLnSigma

⋅⋅+⋅+
⋅⋅+⋅+=

 
Statistical parameters of regression equitation (5) for 

dispersion effects are presented in the Table 5. 
Since the objective of the experiment is to achieve the 

nominal (target) response means value and according to 
the two-step procedure for Nominal-the-Best (NTB) 
problem [5], the first step is to select the levels of disper-
sion factors to minimise dispersion.  

From the relation (5) and Fig. 2, the recommended 
levels of dispersion factors are:  

 

• PS "−1" level, AS "+1" level, DW can be set to both 
levels "−1" and "+1" (considering the interaction 
DW·PS). 

 
 

 
 
 

Then factor SW can be used to bring the mean on the 
target depends of the level of DW. From the relation (4) 
and knowing target is 95 µm, by solving equitation (6): 

 

 
).1(79.2)1(02.3
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there are two possible solutions: 

• if DW is set to the level "−1", then calculated value 
for SW is 16.2;  

• if DW is set to the level "+1", then calculated value 
for SW is 10.5.  
Since in the current conditions it is not possible to set 

factor SW to 16.2, the second solution is adopted giving 
final factors setting obtained form the location and dis-
persion modelling approach: 
• DW = 1.70;  SW = 11;  PS = 0;  AS = 9. 
 
4. DISCUSSION  
  

According to ANOVA analysis and location and dis-
persion modelling approach, and knowing the desired 
response values:  

• MEAN = 95 µm; STDEV = Min.; SNR = Max;  
following control factors setting was found optimal: 
• SW = 11;  DW = 1.70;  PS = 0;  AS = 9;  
giving predicted responses:  
• MEAN = 96.72 µm; STDEV = 4.85 µm; SNR = 

26.24 db . 
From the ANOVA analysis it could be concluded that 

factors DW, PS and AS are dispersion factors that effect 
dispersion of the measured characteristic, explained by 
standard deviation and signal-to-noise ratio. Factors DW, 
SW and PS are location factors that influence the mean 
value of the measured characteristic. The only location 
factor that is not dispersion factor is SW, so it can be 
considered as adjustment factor, used to directly adjust 
the mean value of the measured characteristic [5].  

Although both methods for analysis resulted in the 
same optimal factors setting, it could be noticed that lo-
cation (mean) and dispersion (variation) modelling tech-
nique revealed new interaction found as significant in 
terms of effects on mean (AS·SW·DW) and variation 
(PS·DW), comparing to ANOVA analysis. This is espe-
cially important when the process is controlled by many 
control factors and interactions and also when noise fac-
tors are included in the design of experiment. 

As a process performance measure, Taguchi advo-
cates the use of the quadratic loss function measuring 
quality loss. Quadratic Loss Function (also known as 
Quality Loss Function) was used to quantify the loss in-
curred by the user due to deviation from target perform-
ance, with initial (previous) and optimised factors setting. 
According to formula for Taguchi quality loss function: 
 

 , (7) ( )2)( tYKYL −⋅=
 

where Y is the system response, K − a cost constant 
called the quality loss coefficient, and t − the required 
target. 
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Loss caused by previous performance is Lp(Y) = 
K·70.06 units, where previous mean was 103.37 µm [1], 
and loss that will be encountered after optimisation is 
Lo(Y) = K·2.99 units. 

Thus, by implementation of optimal control factors 
setting into practice, it can be expected that loss will be 
reduced, approximately, twenty three times.  

Using optimised parameters setting, verification run 
was performed. It confirmed the results of the experi-
ment. In order to increase the robustness of the automatic 
enamelling process, this parameters setting was adopted 
for use on long-term production run. Verification of the 
adopted parameters values with regards to other product 
quality characteristics (i.e. visual appearance) are in pro-
gress. Since no problems were encountered in the actual 
experiment as well as in the verification, this experiment 
can be described as successful. 

 
5. CONCLUSIONS 
  

In today’s modern industry, extremely short product 
life cycles and demands for high-quality and high-added 
value products require efficient and objective use of ex-
perimentation to develop the next generation of processes 
and products. However, with the limited amount of data 
provided in unreplicated experiments based on orthogo-
nal arrays, it is quite ambitious to study both location and 
dispersion effects in a single experiment [8]. 

In the observed experiment, Taguchi’s robust design 
technique that searches for parameters setting to make 
products and processes immune to noise sources, was 
applied. The experimental plan was based on L16 or-
thogonal array.  

Analysis of experimental results was performed using 
two methods: ANOVA, and location and dispersion 
modelling. The later revealed previously unknown inter-
actions among control factors that have significant ef-
fects on response mean and variation. Based on this 
analysis, optimal control factors setting was determined 
and verified in a confirmation run.  

The outcome of this research is the optimised auto-
matic enamelling process which improves the product 
quality with respect to base enamelling thickness. The 
use of the location and dispersion modelling approach 
clarified a total contribution of control factors and inter-
actions to the variation in the process and product qual-
ity. It could be concluded that the use of the Taguchi’s 
orthogonal technique and robust parameter design in 
combination with location and dispersion modelling was 
successful method to optimise the observed single-
response system. 
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