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Abstract: The virtual reality applications are spread in many fields and this technology becomes increas-
ingly used. This paper accomplish a survey between different software and hardware solutions developed 
by different universities which allow to the human operator to simulate in virtual environment the work of 
a real industrial robot and carry out operations with the real robot through remote operation. 
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1.  INTRODUCTION 
 

In virtual reality the user can interact with a computer 
simulated environment. This environment can be a simu-
lation of a real world, for example, a solder in the combat 
training field, or it can differ dramatically from reality, as 
in a computer simulation games. The impact of this tech-
nology is growing and the fields in which virtual reality 
is used are becoming more and more diversified. In ro-
botics the workspace of an industrial robot can be trans-
posed in virtual environment and the industrial robot can 
be teleoperated. Some of the benefits of working primary 
with the virtual environment are: lower costs, lower time 
consumption and safety [1]. 

Using the Internet, it may be remote operated too the 
industrial robots in their working environment, while we 
are standing very comfortable in our houses or from the 
offices, far away from the physical location of the robots.  
The process is working like this:  
• from a personal computer it is accessed a web server 

over the Internet, using a web browser; 
• the web server respond and the web browser is load-

ing a graphical user interface (usually a JAVA applet) 
which have at least two parts: a simulation of the ro-
bot and its work environment and a virtual teach pen-
dant; 

• using the virtual teach pendant we control the moves 
of the industrial robot by sending commands to the 
web server, which communicate with the robot con-
troller (Java applet  web browser > web server > ap-
plication server > robot controller > robot). The feed-
back is send vice versa (robot > robot controller > ap-
plication server > web server > web browser > Java 
applet) and the graphical interface is updating; a vis-
ual feedback from digital filming cameras can also be 
used; 
For the moment, the widest practicability is found in 

a concept named e-learning. Using teleoperation, the 
students can test their theoretically knowledge while 
sharing the same laboratory. A summary of such a sce-
nario is described in the following. 

The student opens a web browser and in the address 
bar taps the internet address of the web server (for exam-

ple http://address.com or http://192.222.111.3). The 
server responds and the web browser is loading a page in 
which the student has to login (that’s because the access 
is not granted for every visitor and only the qualified 
persons have access to it (i.e. students, teachers, adminis-
trators etc); after login, a graphical user interface (GUI) 
is loaded into browser. The student introduces a series of 
commands (or program) and then sends it to the web 
server which sends it to the application server; in here the 
commands are compiled and tested to see if these are 
legal moves that the robot can make; if every thing is ok, 
the student get a message and he can save his work or he 
can ask to test his program on the real robot. To test it on 
the real robot, he will receive a limited period of time. 
 
2. RELATED WORK 
 
2.1. Robolab 

At University of Alicante, Spain, it was developed a 
flexible virtual and remote laboratory for teaching Robot-
ics named Robolab. This system is used for e-learning 
and it permits the students to work with a simulation of 
and industrial robot. Robolab is more flexible then other 
systems because it offers the ability of managing differ-
ent robots and it can include new robot models and 
equipment or other kinds of passive objects in the work-
space, without the need of changing the user-interface 
and the system’s architecture [2, 6, 7]. 

Except the industrial robot and its controller, all the 
other components from Robolab can be bought from 
commerce and it doesn’t require a big investment. Figure 
1 shows a representation of hardware components in-
cluded in the Robolab. The main server is a personal 
computer (PC) and has multiple roles: it is acting like 
web server, manage the user’s accounts and access. The 
teleoperation servers are other PCs that compile user’s 
imputed commands from client (a standard PC) and then 
send it to the robot’s controllers. They also receive a 
feed-back. The video server streams a real visual feed-
back to the user [2, 6, 7]. 

To access and operate the Robolab (Fig. 2) the user 
need a personal computer connected to the Internet, a 
web   browser,  Java and  Java  3D  runtime  libraries  in- 
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Fig. 1. Equipment architecture of Robolab system. 
 

 
 

Fig. 2. Software architecture of Robolab system. 
 
stalled. Using the web browser, the user (a student) ac-
cess the “main server” and the page containing the Java 
client-applet, with the graphical user interface, is loaded 
(Fig 3) [2, 6, 7]. 

After accessing the "main server" the Java client-
applet is loaded into the browser and he sees the graphi-
cal user interface. The graphical interface has more parts, 
every one of them displaying different information. 

The transformation matrix with the position and the 
orientation of the end tool, the history of the entered 
commands,  the  values of the robot joints and other con- 

 
a 
 

 
b 
 

Fig. 3. View of the user interface of Robolab. 

 
trols are displayed in the left part, while in the center part 
of the interface appears a simulation of a Mitsubitshi PA-
10 robot (Fig. 3.a) and a Scorbot ER-IX robot (Intelitek) 
(Fig. 3b) [2, 6, 7]. 

In this interface the user can load different scenarios 
and other objects from a local file.  

To control the moves of the robot, the user can use a 
keyboard, a mouse or a commercial joystick for games. 
A force-feedback joystick can be used but this kind of 
joysticks, made specifically for Robotics, is an expensive 
device so the authors decided to improve the user inter-
face with the ability to use regular, game joysticks. A 
bridge between Java library and Microsoft DirectX API 
is made, because Java itself can’t access the joystick 
functions directly (Fig 2) [2, 6, 7]. 

In case of collision or contact of the robot arm, the 
system can transmit this information to the joystick and 
the user feels a sensation of resistance. The Robolab sys-
tem uses two sources of information for tracking contacts 
and collisions:  
• a force sensor which can be placed into the robot end 

tool; 
• the simulation engine from the Java applet;  

The feed-back is performed in two ways:  
• a online video stream from the robot workspace;  
• a continuously updated virtual representation based 

on information received from the teleoperation server.  
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The advantage of the second option is the need of a 
lower bandwidth, this solution being more suited with 
slow Internet connections.  

The main feature included in the Robolab system is 
the flexibility in changing the robot model used in the 
simulation or in adding new robots to be teleoperated in 
the laboratory. The library of classes created for model-
ling robots, which is based on Java 3D, facilitates the 
specification of new robot models and their inclusion in 
the system. In addition, the user interface of Robolab is 
very user-friendly, and the graphical simulation very 
realistic [2, 6, 7]. 
 
2.2. Internet-based Robotic System for remote opera-

tion 
Internet-based Robotic Systems for Teleoperation de-

veloped at University of Essex, United Kingdom, com-
bines the network technology with intelligent mobile 
robots. To achieve fully autonomous operation, the de-
veloped system will use cooperative learning control. 
Figure 4 shows the system configuration of the proposed 
cooperative Internet robots in which the agent-based ap-
proach is adopted. More specifically, console agents are 
resident in the client site, a supervisory agent runs in the 
server site, and a number of coordinating agents are em-
bedded into individual mobile robots [3]. 

The main focuses for the performed research was the 
realization of some of the following features: 
• a uniform interface for easy integration of different 

robots into the system’s framework; 
• an intuitive user interface and adequate feedback; 
• a low-cost and easily extendable system for the addi-

tion of more complex functionality. 
• cooperative behaviours to implement complex tasks 

that can not be implemented by single robot; 
• a high degree of local intelligence to deal with the 

problems caused by low bandwidth and transmission 
delay of the Internet. 
The authors at the first stage have had as main issue 

to design and build a basic telerobotic system framework, 
i.e. a test-bed for testing theories and ideas on the teleop-
erated mobile robots. In this way, the Internet users, such 
as researchers and students, could control the mobile 
robots to explore the Laboratory remotely. 

The configuration of the current system hardware is 
shown in Fig. 5 [3]. The host computer communicates 
with the mobile robot via a radio modem connected to a 
serial  port.  The  video  signal  is  captured  by the frame  

 

 
 

Fig. 4. System Configuration of Cooperative Internet Robots. 

 
 
Fig. 5. System Configuration of Internet based Robotic System. 
 
grabber that is based on the bt848 chipset. The host com-
puter is connected to the network with a standard 
Ethernet card. 

The Pioneer mobile robot produced by ActivMedia is 
powered by two reversible DC motors coupled to two 
wheels with a diameter of five inches (12.5 cm) and 
equipped with eight ultrasonic sensors in which one is on 
each side and other sensors are forward facing. The data 
produced by these sensors is used to build a global map 
of the robot’s environment, which is displayed at the 
client site. An on-board camera, connected to the server 
though the video transceiver, is placed on the front-top of 
the mobile robot in order to give the user a clear view of 
the environment in front of the robot. Another overhead 
camera is available to feedback a global view of the test 
site to the remote user. 

The web server program used is Apache HTTP web 
server working on the Windows 98 platform [4]. The 
whole system consists of several independent modules 
for custom service, and each of them includes a server-
side program and client-side applets. These modules are 
the robot control module, the visual feedback module and 
the virtual representation module. The Java Servlet in the 
web server (Apache) handles the normal communication 
between the clients and server, as shown in Fig. 6 [3]. 

The robot control module commands the mobile ro-
bot. The control program of the Pioneer robots is imple-
mented in C++, so it is necessary to build an interface to 
the Java program. Therefore, JNI (Java native Interface) 
is used to interface a DLL (Dynamic Link Library) file 
implemented with C++. At this stage, into the modules, 
no intelligence was integrated and only and it includes 
only some basic motion commands like: forward, recede, 
change speed and direction. 

Once the system starts, the Java program runs con-
tinuously while it receive commands sent from the client 
and controls the movement of the mobile robot using a 
radio modem connected to the serial port.  The control of 
 

 
 

Fig. 6. Software structure. 
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the robot is made by only one user at a time, while the 
other users wait in a queue until the current operations 
are finished. 

The Java program will feed back the robot informa-
tion and the sonar readings to the clients every 100ms. In 
order to reduce the transmission time, all information 
was combined to form a string shown in Figure 6, and 
sent to all the clients connected to the server. This string 
will be interpreted at the client side to display an envi-
ronment map and the necessary robot status [3]. 

The continuous and steady image stream feedback 
from the robot site is necessary when the Internet users 
control the mobile robot at the client site. Moreover, the 
image quality should be good enough to provide as much 
information as possible about the remote site. 

Most other projects use server push technology, 
where the video was made up from a stream of still im-
ages, and sent by a Java program to a Java applet via a 
socket, and interpreted by the applet in either GIF or 
JPEG format. In this system, the images are captured 
from the frame grabber based on the bt848 chipset and 
compressed to JPEG format by software implemented in 
C++. 

Then, these images are sent from the image server to 
the web server through a socket. The Java program 
streams these JPEG images to all the clients that are con-
nected to this web server at a fixed interval. On the client 
side, the Java applet will recreate the image when it re-
ceives an entire frame and displays it. 

The user interface is designed with the intention of 
making it easy for researchers and students to interact 
with the mobile robot. A simple interface is designed to 
provide as much information as possible for tele-
operation. This user interface consists of several Java 
applets. It can work on any web browser that supports 
Java. On-line instructions are supplied with this console. 

The control panel is made up of four direction buttons 
initially. The user can directly control the mobile robot 
by clicking the direction button on the control panel or 
by using the keyboard for fast and complex control such 
as change of speed or set fixed speed. The image display 
applet shows the visual feedback in a continuous jpeg 
image with 280x210 pixels at 24-bit colour depth. The 
virtual environment map applet displays some basic in-
formation about the mobile robot and the test site by ana-
lyzing the data feedback from the mobile robot. The user 
can find the obstacles near the robot and the trajectory, 
the current position and the speed of the mobile robot. 
With this simple user interface, one user can control the 
movement of the mobile robot from the web browser 
with the visual feed back and a virtual representation 
map.  The other users only have the visual feedback and 
a virtual map at the same time, and have to wait in queue 
until the first user logout at this stage [3]. 
 
2.3. An Experiment in Internet-Based, Human-

Assisted Robotics 
At the Department of Electrical Engineering and 

Computer Science from Case Western Reserve Univer-
sity in Cleveland, Ohio was constructed  a robotic test  
facility for evaluating  the prospect of  internet-based  
supervisory  control   of  semi-autonomous systems.  The  

 
 

Fig. 7. Robot Kinematics. 
 

 
 

Fig. 8. Robot’s side view. 
 

system consisted of a robotic arm, two cameras, a PC 
controller, and a Web server.  

The robot used in the experiment was a low-cost edu-
cational robot that had been retrofit for open-architecture 
control. While this robot had limited workspace, payload, 
speed, and precision, this choice was attractive in terms 
of safety, which is a significant consideration in remote 
control. The robot had five degrees of freedom in a serial 
kinematic chain (Fig 7), similar to popular industrial de-
signs (Fig. 8) [5]. 

The robot was interfaced at the torque level to an ana-
log output board within a PC control computer. Incre-
mental encoders on the joints were interfaced to encoder 
counters within the I/O card hosted by the PC. The PC 
had a Pentium 133 processor, which was relatively slow, 
but adequate for this investigation.  

The actuators consisted of the joint motors and the 
robot’s gripper. The sensors included motor encoders, an 
optical distance sensor, a gripper-mounted black-and-
white camera, and a color Web camera. 

The control software on the PC ran within the envi-
ronment of the QNX operating system, a real-time oper-
ating system derived from Unix and commonly em-
ployed on x86 machines. QNX supports real-time multi-
tasking; i.e., multiple processes can be prioritized and 
scheduled to run independently, emulating parallel exe-
cution. Multi-tasking was employed in our system to run 
concurrently several control and communication proc-

 



95 

esses. Communications among the separate processes is 
coordinated through semaphores. Semaphores were used 
to drive processes at fixed rates and as a mutual exclu-
sion mechanism. We used an existing priority-driven 
real-time infrastructure that divided processes into low 
and high levels. The low-level processes were simple but 
required execution at high frequency and at high priority. 
In contrast, the high-level processes required more com-
putation but did not require frequent execution.  The con-
troller software ran on the QNX PC, was written in C, 
and was compiled with the Watcom compiler that is 
standard in QNX 4. 

The experimental system used an Apache Web server 
to run as the front-end for user interaction. In turn, the 
Web server communicated with the QNX controller and 
relayed user commands to the robot. There is no version  
of  the Apache server for the QNX operating system, and 
so we installed the Web server on a separate PC running 
Windows NT. The NT machine connected to the robot 
controller through Ethernet. In general, the Web server  
and robot controller could be installed on the same or on 
different computers. A single-machine installation is 
characterized by reduced hardware requirements and by 
fast communication between the Web server and the con-
troller. The separation of front- and back-end hosts can 
result in legacy with existing platforms and can lead to 
higher system scalability and security. 

The Web server initiated robot operation by invoking 
a CGI script that ran at the Web server side. In turn, the 
script embedded TCP connectivity to relay instructions to 
the robot. Furthermore, the scripts gathered feedback 
from the robot and passed it on to the user. As a result, 
CGI scripts provided a module to communicate and pass 
information back and forth between the server and the 
controller. CGI scripts were exposed to remote users by 
creating a form within an HTML document and inserting 
the script URI as the form action.  

 CGI is an acronym that stands for "Common Gate-
way Interface" and refers to the protocol used to pass 
arguments from the Web server to the script. Internally, 
the script could be written in any programming language 
but, in practice, CGI scripts are typically written in Perl.  

The Apache server had a handler for running CGI 
scripts as threads that are part of the Web server process: 
when the server invoked a CGI script, a new thread was 
created within the Web server process to execute the 
script. An earlier version of the system did not use such a 
module and was running CGI scripts as separate proc-
esses. The robot reacted very slowly to users’ commands 
due to the overhead for forking additional processes to 
execute the scripts. When CGI scripts were wrapped in 
the same server process, the robot reaction time im-
proved dramatically.  

The Web interface was written in HTML. The inter-
face had feedback buttons for a user to transmit com-
mands to the Web. The commands would be relayed to 
the robot controller for execution. Radio buttons, drop 
down menu, and normal buttons were used. The radio 
buttons forced the user to select from a list of valid 
choices so that the return string would not be an empty 
string.  The drop down menu stored choices for the users. 

Image-based servo control were accomplished 
through the actual image from the camera. The frame 

grabber took a snapshot of the robot’s view and the Web 
server encoded the saved image as part of the HTML 
display. The image was a black and white JPEG picture 
and it projected the robot’s point of view. Such pictures 
were used as an input means. The user could click on the 
actual picture on the Internet browser, and this action 
would invoke recording the actual pixel X and Y coordi-
nates.  

These coordinates were then delivered to the Web 
server and a CGI script relayed the data from the web 
server to the robot controller. Image-space coordinates 
were translated into robot-space coordinates, transparent 
to the operator, to command the robot to move to the 
selected location. 

The buttons and the servo control were the input ele-
ments; however the user also needed feedback from the 
system. There were two forms of feedback: images from 
the robot’s viewpoint (with the gripper-mounted camera) 
and a wider-angle side view from a Web camera (a 
WebCam).  The first camera was mounted on the robot’s 
arm and its frame was refreshed only after the robot arm 
completed a movement. In practice, the frame was re-
freshed at the behest of a CGI script spawned by the 
server when the arm movement completed. Since the 
picture was delivered only at the end of the arm move-
ment, the user would see a "busy" icon during the 
movement. A second camera was mounted near the robot 
with a side view of the robot and its workspace and pro-
vided a real-time view of the robot environment. The 
camera used the Webcam32 surveyor software that acted 
as a real-time streaming video server to capture and de-
liver the images to a remote user in real time. Webcam32 
was a separate server that worked independently from the 
Apache server [4], but ran on the same NT machine as 
the Web server. To display the video stream, the client 
used a Java applet, i.e., a Java byte code executable that 
was dynamically downloaded into a browser over the 
Internet. The applet continuously downloaded video 
streams from Webcam32, displaying the video at a rate 
of about 1 frame per second.  

The human supervisor interacted exclusively with the 
Apache Web server and with the Webcam32 video 
server. In practice, the operator could use any of the 
commercially available Web browsers to supervise the 
robot and download video streams. When the user 
clicked on a button or selected an option from a drop-
down menu, the user choice was sent to the Web server 
in a standard HTTP request. The server would then trig-
ger a CGI script that communicated with the robot con-
troller through a TCP connection. Meanwhile, the Web-
cam32 server would continuously push video frames to 
the Java applet running on a Java Virtual Machine within 
the browser, presenting the video feed to the user.  

The client site used widespread off-the-shelf compo-
nents, such as Java-enabled Web browsers, so that the 
human interface to the robot required no specialized 
software or hardware beyond what is already commonly 
available.  

Furthermore, the use of standard components shifted 
the software design process from the internals to the in-
terface between humans and machines [5].  
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3.  ACTUAL DEVELOPMENT STATUS OF OWN 
WORKS 

 
3.1. SCARA robot for wafer manipulation virtual 

prototyping and programming [8] 
For wafer manipulation in atmospherical environ-

ment, a SCARA-type robotic manipulator with four de-
grees of freedom has been developed, first as a virtual 
prototype using the CATIA software. Figure 9 illustrates 
a perspective view of the designed atmospherically oper-
ating robot with internal components exposed. 

The robotic arm is sustained by a support that in-
cludes the partial assembly generating first (rotation) 
degree of freedom for the robotic arm system, and a ver-
tical extending column (second degree of freedom for the 
robotic arm system), as shown in figure 9. The base rota-
tion is performed through a spur gears and timing belt 
system and the vertical translation is performed through a 
ball-screw system.  

The robotic arm system also includes three elements 
linked by rotary joints (through timing belt systems): first 
and second links of the articulated arm respectively the 
end-effector orientation system. The last element of the 
robotic arm system is a (vacuum operating) ceramic end-
effector special dedicated for wafer manipulation. 

Following virtual prototyping of the atmospherically 
robotic arm system, physical (real) robot operational unit 
has been made in cooperation with Japan and China pri-
vate companies. As well, the robotic arm system infor-
mation unit has been designed and its prototype manu-
factured in a Romanian private company (Fig. 10a,b). 
Finally, a software package for robot teach-in and offline 
programming and simulation (Figs. 11, 12, 13, and 14) 
has been developed in partnership with Romanian private 
company. 

The ROBOPACK software is designed for command, 
control and programming of industrial robots performing 
wafer manipulation operation. This software package 
includes: 
• an user friendly main graphical interface in English 

language (Fig. 11); 
• advanced 3D simulation/visualization window (Fig. 

12); 
 

 
 

Fig. 9 – SCARA-type robot designed for wafer manipulation in 
atmospheric environment. 

• an editor for the robot’s application teach-in and off-
line programming using an originally developed robot 
language (Fig. 13); 

• a virtual teaching pad needed in teac-in command of 
the robot and key-points teaching (Fig. 14); 

 

  
a                                         b 

 

 
c 
 

Fig. 10. The robotic arm system: a) atmospherical operating 
robot unit; b) robot informational unit (the dedicated robotic 

controller); c) full system (including the notebook running the 
simulation and programming software). 

 

 
 

Fig. 11. The main graphical interface. 
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Fig. 12. 3D simulation/visualization window. 
 

The virtual teaching pad can directly control the ro-
bot’s movements, being able to command movement on 
each axis of the robot, to set movement direction, move-
ment speed and acceleration values, to memorize key-
points, etc. 

During manual control and teach-in, the visual inter-
face of virtual teaching pad (Fig. 14) works with real 
information supplied by the position transducers 
mounted on each robot axis.  

Similarly, the advanced 3D visualization / simulation 
software (Fig. 12) is able to realize the virtual simulation 
of a program based on: 
• programming information for the case of offline pro-

gramming and simulation procedures, as well as  
• real robotic system information supplied by the posi-

tion transducers mounted on each robot axis, in case 
of robot manual control, teach-in or real task / pro-
gram executions.  
As result, the overall programming and simulation 

software allows a real time visualization of robot move-
ments in the two simulation procedures and real task / 
program execution. 

The programming language is useful for both robot 
teach-in programming and offline programming. It in-
cludes user friendly instructions and commands, usually 
to be  selected  from  predefined pull-down menu, and in- 
 

 
 

Fig. 13. The editor for the robot’s application programming. 

 
 

Fig. 14. The virtual teaching pad. 

 
serted directly to the program, and as well the capability 
to directly edit specific commands / instructions / intro-
ducing numerical values by direct typing. 

For complex programming task the advanced 3D 
visualization / simulation software can be easily config-
ured for including in the work scene peripheral equip-
ment or different other objects that need to be correlated 
with robot functionality.  
 
4. CONCLUSIONS 
 

Based on the analysis previously made, we noticed 
that all the remote system have some similarities. 

The common hardware structure is composed by a 
remote computer, a main server, the robot with its con-
troller and cameras used for visual feed-back.  

The main server can have multiple roles: web server, 
controller module, database server and stream server. 
The software installed is open source: Apache for web 
server, MySQL for database management, Java for 
graphical user interface. 

Own works achievement showed in section 3 of the 
paper illustrate good preliminary approach on the way to 
start developing a fully remote robotic operating system 
(in terms of specifically developed virtual environment 
for robot off line simulation as well as own programming 
language and software modules). 

Considering all above, the hardware and software ar-
chitecture for a completely remote laboratory operation 
intended to be developed by ourselves may described by 
below mentioned features. 

Hardware system may include a remote computer, 
running Windows or UNIX based operating system.  

The only things this computer needs is a web browser 
capable of running Java applets, Java platform installed 
and a connection to the Internet (Java applets are pre-
ferred because it is browser and operating system inde-
pendent, leaving the user the ability to use its own web 
browser and operating system − Windows, Linux, 
FreeBSD etc). 

The Java applet will be split in more areas. In the 
main area a simulation of the entire workspace of the 
robot will be displayed while in the left part will be dis-
played a virtual teach pendant. The transformation matrix 
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with the position and the orientation of the end tool ap-
pears also in the left side.  

The simulation can be displayed in to modes: a test 
simulation, based on user’s inputs from the virtual teach 
pendant or a real simulation of the robot based on the 
feed-back received from the robot controller and the sen-
sors from the laboratory. In the second case, it is very 
important to update with accurate data. On slow internet 
connections this could be a very big problem and to solve 
it we shell integrate an application to test the internet 
speed. 

Using HTTP (Hypertext Transfer Protocol) protocol 
the browser communicates with the web server located in 
the laboratory. On the web server is running Apache 
HTTP Server which permits communication on port 80. 
The Apache server has another role: it makes the connec-
tion between requests received from the remote computer 
and the controller module which communicate directly 
with the robot controller. The controller module will be 
developed using C++ programming language and it will 
run as an Apache module. The controller module also 
tests the imputed commands or programs sent by the user 
and in case the commands are illegal.  If everything is ok, 
the user can save the work as a scenario or he can upload 
the commands to the robot controller (if the robot is free 
of job it will immediately execute the commands, other-
wise the controller module will put the execution on a 
waiting queue). 

A visual feed-back is also needed, so a couple of 
cameras will capture images from the laboratory and will 
transmit it to the stream video server. 

The access to the main servers will be granted bases 
on a username and a password and multiple levels of 
accounts will be available. Only the system administra-
tors are able to create users accounts. All this information 
and the user’s sessions with their logs and command his-
tories will be stored using the MySQL database engine. 

To increase the security of the whole site, a firewall 
will be used, so the connection to the server will be al-
lowed from certain IP’s classes. In the start, a single PC 
can play many rolls: web server, database server, fire-
wall, and stream server and controller module. In a pro-
duction environment it is best to separate the rolls, every 
roll running on its own computer, except the web server 

and the controller module (to decrease the application 
latency). 
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