

Proceedings of the International Conference on Manufacturing Systems – ICMaS
Vol. 4, 2009, ISSN 1842-3183

University POLITEHNICA of Bucharest, Machine and Manufacturing Systems Department
Bucharest, Romania

SOFTWARE AND HARDWARE ARCHITECTURES OF THE INTERNET-BASED
ROBOTIC SYSTEMS FOR REMOTE OPERATION

Alexandru DORIN, Adrian Florin NICOLESCU, Stelian POPA

Abstract: The virtual reality applications are spread in many fields and this technology becomes increas-
ingly used. This paper accomplish a survey between different software and hardware solutions developed
by different universities which allow to the human operator to simulate in virtual environment the work of
a real industrial robot and carry out operations with the real robot through remote operation.

Key words: teleoperation, telerobotics, virtual reality, remote laboratory, Internet.

1. INTRODUCTION

In virtual reality the user can interact with a computer
simulated environment. This environment can be a simu-
lation of a real world, for example, a solder in the combat
training field, or it can differ dramatically from reality, as
in a computer simulation games. The impact of this tech-
nology is growing and the fields in which virtual reality
is used are becoming more and more diversified. In ro-
botics the workspace of an industrial robot can be trans-
posed in virtual environment and the industrial robot can
be teleoperated. Some of the benefits of working primary
with the virtual environment are: lower costs, lower time
consumption and safety [1].

Using the Internet, it may be remote operated too the
industrial robots in their working environment, while we
are standing very comfortable in our houses or from the
offices, far away from the physical location of the robots.
The process is working like this:
• from a personal computer it is accessed a web server

over the Internet, using a web browser;
• the web server respond and the web browser is load-

ing a graphical user interface (usually a JAVA applet)
which have at least two parts: a simulation of the ro-
bot and its work environment and a virtual teach pen-
dant;

• using the virtual teach pendant we control the moves
of the industrial robot by sending commands to the
web server, which communicate with the robot con-
troller (Java applet web browser > web server > ap-
plication server > robot controller > robot). The feed-
back is send vice versa (robot > robot controller > ap-
plication server > web server > web browser > Java
applet) and the graphical interface is updating; a vis-
ual feedback from digital filming cameras can also be
used;
For the moment, the widest practicability is found in

a concept named e-learning. Using teleoperation, the
students can test their theoretically knowledge while
sharing the same laboratory. A summary of such a sce-
nario is described in the following.

The student opens a web browser and in the address
bar taps the internet address of the web server (for exam-

ple http://address.com or http://192.222.111.3). The
server responds and the web browser is loading a page in
which the student has to login (that’s because the access
is not granted for every visitor and only the qualified
persons have access to it (i.e. students, teachers, adminis-
trators etc); after login, a graphical user interface (GUI)
is loaded into browser. The student introduces a series of
commands (or program) and then sends it to the web
server which sends it to the application server; in here the
commands are compiled and tested to see if these are
legal moves that the robot can make; if every thing is ok,
the student get a message and he can save his work or he
can ask to test his program on the real robot. To test it on
the real robot, he will receive a limited period of time.

2. RELATED WORK

2.1. Robolab

At University of Alicante, Spain, it was developed a
flexible virtual and remote laboratory for teaching Robot-
ics named Robolab. This system is used for e-learning
and it permits the students to work with a simulation of
and industrial robot. Robolab is more flexible then other
systems because it offers the ability of managing differ-
ent robots and it can include new robot models and
equipment or other kinds of passive objects in the work-
space, without the need of changing the user-interface
and the system’s architecture [2, 6, 7].

Except the industrial robot and its controller, all the
other components from Robolab can be bought from
commerce and it doesn’t require a big investment. Figure
1 shows a representation of hardware components in-
cluded in the Robolab. The main server is a personal
computer (PC) and has multiple roles: it is acting like
web server, manage the user’s accounts and access. The
teleoperation servers are other PCs that compile user’s
imputed commands from client (a standard PC) and then
send it to the robot’s controllers. They also receive a
feed-back. The video server streams a real visual feed-
back to the user [2, 6, 7].

To access and operate the Robolab (Fig. 2) the user
need a personal computer connected to the Internet, a
web browser, Java and Java 3D runtime libraries in-

92

Fig. 1. Equipment architecture of Robolab system.

Fig. 2. Software architecture of Robolab system.

stalled. Using the web browser, the user (a student) ac-
cess the “main server” and the page containing the Java
client-applet, with the graphical user interface, is loaded
(Fig 3) [2, 6, 7].

After accessing the "main server" the Java client-
applet is loaded into the browser and he sees the graphi-
cal user interface. The graphical interface has more parts,
every one of them displaying different information.

The transformation matrix with the position and the
orientation of the end tool, the history of the entered
commands, the values of the robot joints and other con-

a

b

Fig. 3. View of the user interface of Robolab.

trols are displayed in the left part, while in the center part
of the interface appears a simulation of a Mitsubitshi PA-
10 robot (Fig. 3.a) and a Scorbot ER-IX robot (Intelitek)
(Fig. 3b) [2, 6, 7].

In this interface the user can load different scenarios
and other objects from a local file.

To control the moves of the robot, the user can use a
keyboard, a mouse or a commercial joystick for games.
A force-feedback joystick can be used but this kind of
joysticks, made specifically for Robotics, is an expensive
device so the authors decided to improve the user inter-
face with the ability to use regular, game joysticks. A
bridge between Java library and Microsoft DirectX API
is made, because Java itself can’t access the joystick
functions directly (Fig 2) [2, 6, 7].

In case of collision or contact of the robot arm, the
system can transmit this information to the joystick and
the user feels a sensation of resistance. The Robolab sys-
tem uses two sources of information for tracking contacts
and collisions:
• a force sensor which can be placed into the robot end

tool;
• the simulation engine from the Java applet;

The feed-back is performed in two ways:
• a online video stream from the robot workspace;
• a continuously updated virtual representation based

on information received from the teleoperation server.

93

The advantage of the second option is the need of a
lower bandwidth, this solution being more suited with
slow Internet connections.

The main feature included in the Robolab system is
the flexibility in changing the robot model used in the
simulation or in adding new robots to be teleoperated in
the laboratory. The library of classes created for model-
ling robots, which is based on Java 3D, facilitates the
specification of new robot models and their inclusion in
the system. In addition, the user interface of Robolab is
very user-friendly, and the graphical simulation very
realistic [2, 6, 7].

2.2. Internet-based Robotic System for remote opera-

tion
Internet-based Robotic Systems for Teleoperation de-

veloped at University of Essex, United Kingdom, com-
bines the network technology with intelligent mobile
robots. To achieve fully autonomous operation, the de-
veloped system will use cooperative learning control.
Figure 4 shows the system configuration of the proposed
cooperative Internet robots in which the agent-based ap-
proach is adopted. More specifically, console agents are
resident in the client site, a supervisory agent runs in the
server site, and a number of coordinating agents are em-
bedded into individual mobile robots [3].

The main focuses for the performed research was the
realization of some of the following features:
• a uniform interface for easy integration of different

robots into the system’s framework;
• an intuitive user interface and adequate feedback;
• a low-cost and easily extendable system for the addi-

tion of more complex functionality.
• cooperative behaviours to implement complex tasks

that can not be implemented by single robot;
• a high degree of local intelligence to deal with the

problems caused by low bandwidth and transmission
delay of the Internet.
The authors at the first stage have had as main issue

to design and build a basic telerobotic system framework,
i.e. a test-bed for testing theories and ideas on the teleop-
erated mobile robots. In this way, the Internet users, such
as researchers and students, could control the mobile
robots to explore the Laboratory remotely.

The configuration of the current system hardware is
shown in Fig. 5 [3]. The host computer communicates
with the mobile robot via a radio modem connected to a
serial port. The video signal is captured by the frame

Fig. 4. System Configuration of Cooperative Internet Robots.

Fig. 5. System Configuration of Internet based Robotic System.

grabber that is based on the bt848 chipset. The host com-
puter is connected to the network with a standard
Ethernet card.

The Pioneer mobile robot produced by ActivMedia is
powered by two reversible DC motors coupled to two
wheels with a diameter of five inches (12.5 cm) and
equipped with eight ultrasonic sensors in which one is on
each side and other sensors are forward facing. The data
produced by these sensors is used to build a global map
of the robot’s environment, which is displayed at the
client site. An on-board camera, connected to the server
though the video transceiver, is placed on the front-top of
the mobile robot in order to give the user a clear view of
the environment in front of the robot. Another overhead
camera is available to feedback a global view of the test
site to the remote user.

The web server program used is Apache HTTP web
server working on the Windows 98 platform [4]. The
whole system consists of several independent modules
for custom service, and each of them includes a server-
side program and client-side applets. These modules are
the robot control module, the visual feedback module and
the virtual representation module. The Java Servlet in the
web server (Apache) handles the normal communication
between the clients and server, as shown in Fig. 6 [3].

The robot control module commands the mobile ro-
bot. The control program of the Pioneer robots is imple-
mented in C++, so it is necessary to build an interface to
the Java program. Therefore, JNI (Java native Interface)
is used to interface a DLL (Dynamic Link Library) file
implemented with C++. At this stage, into the modules,
no intelligence was integrated and only and it includes
only some basic motion commands like: forward, recede,
change speed and direction.

Once the system starts, the Java program runs con-
tinuously while it receive commands sent from the client
and controls the movement of the mobile robot using a
radio modem connected to the serial port. The control of

Fig. 6. Software structure.

94

the robot is made by only one user at a time, while the
other users wait in a queue until the current operations
are finished.

The Java program will feed back the robot informa-
tion and the sonar readings to the clients every 100ms. In
order to reduce the transmission time, all information
was combined to form a string shown in Figure 6, and
sent to all the clients connected to the server. This string
will be interpreted at the client side to display an envi-
ronment map and the necessary robot status [3].

The continuous and steady image stream feedback
from the robot site is necessary when the Internet users
control the mobile robot at the client site. Moreover, the
image quality should be good enough to provide as much
information as possible about the remote site.

Most other projects use server push technology,
where the video was made up from a stream of still im-
ages, and sent by a Java program to a Java applet via a
socket, and interpreted by the applet in either GIF or
JPEG format. In this system, the images are captured
from the frame grabber based on the bt848 chipset and
compressed to JPEG format by software implemented in
C++.

Then, these images are sent from the image server to
the web server through a socket. The Java program
streams these JPEG images to all the clients that are con-
nected to this web server at a fixed interval. On the client
side, the Java applet will recreate the image when it re-
ceives an entire frame and displays it.

The user interface is designed with the intention of
making it easy for researchers and students to interact
with the mobile robot. A simple interface is designed to
provide as much information as possible for tele-
operation. This user interface consists of several Java
applets. It can work on any web browser that supports
Java. On-line instructions are supplied with this console.

The control panel is made up of four direction buttons
initially. The user can directly control the mobile robot
by clicking the direction button on the control panel or
by using the keyboard for fast and complex control such
as change of speed or set fixed speed. The image display
applet shows the visual feedback in a continuous jpeg
image with 280x210 pixels at 24-bit colour depth. The
virtual environment map applet displays some basic in-
formation about the mobile robot and the test site by ana-
lyzing the data feedback from the mobile robot. The user
can find the obstacles near the robot and the trajectory,
the current position and the speed of the mobile robot.
With this simple user interface, one user can control the
movement of the mobile robot from the web browser
with the visual feed back and a virtual representation
map. The other users only have the visual feedback and
a virtual map at the same time, and have to wait in queue
until the first user logout at this stage [3].

2.3. An Experiment in Internet-Based, Human-

Assisted Robotics
At the Department of Electrical Engineering and

Computer Science from Case Western Reserve Univer-
sity in Cleveland, Ohio was constructed a robotic test
facility for evaluating the prospect of internet-based
supervisory control of semi-autonomous systems. The

Fig. 7. Robot Kinematics.

Fig. 8. Robot’s side view.

system consisted of a robotic arm, two cameras, a PC
controller, and a Web server.

The robot used in the experiment was a low-cost edu-
cational robot that had been retrofit for open-architecture
control. While this robot had limited workspace, payload,
speed, and precision, this choice was attractive in terms
of safety, which is a significant consideration in remote
control. The robot had five degrees of freedom in a serial
kinematic chain (Fig 7), similar to popular industrial de-
signs (Fig. 8) [5].

The robot was interfaced at the torque level to an ana-
log output board within a PC control computer. Incre-
mental encoders on the joints were interfaced to encoder
counters within the I/O card hosted by the PC. The PC
had a Pentium 133 processor, which was relatively slow,
but adequate for this investigation.

The actuators consisted of the joint motors and the
robot’s gripper. The sensors included motor encoders, an
optical distance sensor, a gripper-mounted black-and-
white camera, and a color Web camera.

The control software on the PC ran within the envi-
ronment of the QNX operating system, a real-time oper-
ating system derived from Unix and commonly em-
ployed on x86 machines. QNX supports real-time multi-
tasking; i.e., multiple processes can be prioritized and
scheduled to run independently, emulating parallel exe-
cution. Multi-tasking was employed in our system to run
concurrently several control and communication proc-

95

esses. Communications among the separate processes is
coordinated through semaphores. Semaphores were used
to drive processes at fixed rates and as a mutual exclu-
sion mechanism. We used an existing priority-driven
real-time infrastructure that divided processes into low
and high levels. The low-level processes were simple but
required execution at high frequency and at high priority.
In contrast, the high-level processes required more com-
putation but did not require frequent execution. The con-
troller software ran on the QNX PC, was written in C,
and was compiled with the Watcom compiler that is
standard in QNX 4.

The experimental system used an Apache Web server
to run as the front-end for user interaction. In turn, the
Web server communicated with the QNX controller and
relayed user commands to the robot. There is no version
of the Apache server for the QNX operating system, and
so we installed the Web server on a separate PC running
Windows NT. The NT machine connected to the robot
controller through Ethernet. In general, the Web server
and robot controller could be installed on the same or on
different computers. A single-machine installation is
characterized by reduced hardware requirements and by
fast communication between the Web server and the con-
troller. The separation of front- and back-end hosts can
result in legacy with existing platforms and can lead to
higher system scalability and security.

The Web server initiated robot operation by invoking
a CGI script that ran at the Web server side. In turn, the
script embedded TCP connectivity to relay instructions to
the robot. Furthermore, the scripts gathered feedback
from the robot and passed it on to the user. As a result,
CGI scripts provided a module to communicate and pass
information back and forth between the server and the
controller. CGI scripts were exposed to remote users by
creating a form within an HTML document and inserting
the script URI as the form action.

 CGI is an acronym that stands for "Common Gate-
way Interface" and refers to the protocol used to pass
arguments from the Web server to the script. Internally,
the script could be written in any programming language
but, in practice, CGI scripts are typically written in Perl.

The Apache server had a handler for running CGI
scripts as threads that are part of the Web server process:
when the server invoked a CGI script, a new thread was
created within the Web server process to execute the
script. An earlier version of the system did not use such a
module and was running CGI scripts as separate proc-
esses. The robot reacted very slowly to users’ commands
due to the overhead for forking additional processes to
execute the scripts. When CGI scripts were wrapped in
the same server process, the robot reaction time im-
proved dramatically.

The Web interface was written in HTML. The inter-
face had feedback buttons for a user to transmit com-
mands to the Web. The commands would be relayed to
the robot controller for execution. Radio buttons, drop
down menu, and normal buttons were used. The radio
buttons forced the user to select from a list of valid
choices so that the return string would not be an empty
string. The drop down menu stored choices for the users.

Image-based servo control were accomplished
through the actual image from the camera. The frame

grabber took a snapshot of the robot’s view and the Web
server encoded the saved image as part of the HTML
display. The image was a black and white JPEG picture
and it projected the robot’s point of view. Such pictures
were used as an input means. The user could click on the
actual picture on the Internet browser, and this action
would invoke recording the actual pixel X and Y coordi-
nates.

These coordinates were then delivered to the Web
server and a CGI script relayed the data from the web
server to the robot controller. Image-space coordinates
were translated into robot-space coordinates, transparent
to the operator, to command the robot to move to the
selected location.

The buttons and the servo control were the input ele-
ments; however the user also needed feedback from the
system. There were two forms of feedback: images from
the robot’s viewpoint (with the gripper-mounted camera)
and a wider-angle side view from a Web camera (a
WebCam). The first camera was mounted on the robot’s
arm and its frame was refreshed only after the robot arm
completed a movement. In practice, the frame was re-
freshed at the behest of a CGI script spawned by the
server when the arm movement completed. Since the
picture was delivered only at the end of the arm move-
ment, the user would see a "busy" icon during the
movement. A second camera was mounted near the robot
with a side view of the robot and its workspace and pro-
vided a real-time view of the robot environment. The
camera used the Webcam32 surveyor software that acted
as a real-time streaming video server to capture and de-
liver the images to a remote user in real time. Webcam32
was a separate server that worked independently from the
Apache server [4], but ran on the same NT machine as
the Web server. To display the video stream, the client
used a Java applet, i.e., a Java byte code executable that
was dynamically downloaded into a browser over the
Internet. The applet continuously downloaded video
streams from Webcam32, displaying the video at a rate
of about 1 frame per second.

The human supervisor interacted exclusively with the
Apache Web server and with the Webcam32 video
server. In practice, the operator could use any of the
commercially available Web browsers to supervise the
robot and download video streams. When the user
clicked on a button or selected an option from a drop-
down menu, the user choice was sent to the Web server
in a standard HTTP request. The server would then trig-
ger a CGI script that communicated with the robot con-
troller through a TCP connection. Meanwhile, the Web-
cam32 server would continuously push video frames to
the Java applet running on a Java Virtual Machine within
the browser, presenting the video feed to the user.

The client site used widespread off-the-shelf compo-
nents, such as Java-enabled Web browsers, so that the
human interface to the robot required no specialized
software or hardware beyond what is already commonly
available.

Furthermore, the use of standard components shifted
the software design process from the internals to the in-
terface between humans and machines [5].

96

3. ACTUAL DEVELOPMENT STATUS OF OWN
WORKS

3.1. SCARA robot for wafer manipulation virtual

prototyping and programming [8]
For wafer manipulation in atmospherical environ-

ment, a SCARA-type robotic manipulator with four de-
grees of freedom has been developed, first as a virtual
prototype using the CATIA software. Figure 9 illustrates
a perspective view of the designed atmospherically oper-
ating robot with internal components exposed.

The robotic arm is sustained by a support that in-
cludes the partial assembly generating first (rotation)
degree of freedom for the robotic arm system, and a ver-
tical extending column (second degree of freedom for the
robotic arm system), as shown in figure 9. The base rota-
tion is performed through a spur gears and timing belt
system and the vertical translation is performed through a
ball-screw system.

The robotic arm system also includes three elements
linked by rotary joints (through timing belt systems): first
and second links of the articulated arm respectively the
end-effector orientation system. The last element of the
robotic arm system is a (vacuum operating) ceramic end-
effector special dedicated for wafer manipulation.

Following virtual prototyping of the atmospherically
robotic arm system, physical (real) robot operational unit
has been made in cooperation with Japan and China pri-
vate companies. As well, the robotic arm system infor-
mation unit has been designed and its prototype manu-
factured in a Romanian private company (Fig. 10a,b).
Finally, a software package for robot teach-in and offline
programming and simulation (Figs. 11, 12, 13, and 14)
has been developed in partnership with Romanian private
company.

The ROBOPACK software is designed for command,
control and programming of industrial robots performing
wafer manipulation operation. This software package
includes:
• an user friendly main graphical interface in English

language (Fig. 11);
• advanced 3D simulation/visualization window (Fig.

12);

Fig. 9 – SCARA-type robot designed for wafer manipulation in
atmospheric environment.

• an editor for the robot’s application teach-in and off-
line programming using an originally developed robot
language (Fig. 13);

• a virtual teaching pad needed in teac-in command of
the robot and key-points teaching (Fig. 14);

a b

c

Fig. 10. The robotic arm system: a) atmospherical operating
robot unit; b) robot informational unit (the dedicated robotic

controller); c) full system (including the notebook running the
simulation and programming software).

Fig. 11. The main graphical interface.

97

Fig. 12. 3D simulation/visualization window.

The virtual teaching pad can directly control the ro-
bot’s movements, being able to command movement on
each axis of the robot, to set movement direction, move-
ment speed and acceleration values, to memorize key-
points, etc.

During manual control and teach-in, the visual inter-
face of virtual teaching pad (Fig. 14) works with real
information supplied by the position transducers
mounted on each robot axis.

Similarly, the advanced 3D visualization / simulation
software (Fig. 12) is able to realize the virtual simulation
of a program based on:
• programming information for the case of offline pro-

gramming and simulation procedures, as well as
• real robotic system information supplied by the posi-

tion transducers mounted on each robot axis, in case
of robot manual control, teach-in or real task / pro-
gram executions.
As result, the overall programming and simulation

software allows a real time visualization of robot move-
ments in the two simulation procedures and real task /
program execution.

The programming language is useful for both robot
teach-in programming and offline programming. It in-
cludes user friendly instructions and commands, usually
to be selected from predefined pull-down menu, and in-

Fig. 13. The editor for the robot’s application programming.

Fig. 14. The virtual teaching pad.

serted directly to the program, and as well the capability
to directly edit specific commands / instructions / intro-
ducing numerical values by direct typing.

For complex programming task the advanced 3D
visualization / simulation software can be easily config-
ured for including in the work scene peripheral equip-
ment or different other objects that need to be correlated
with robot functionality.

4. CONCLUSIONS

Based on the analysis previously made, we noticed
that all the remote system have some similarities.

The common hardware structure is composed by a
remote computer, a main server, the robot with its con-
troller and cameras used for visual feed-back.

The main server can have multiple roles: web server,
controller module, database server and stream server.
The software installed is open source: Apache for web
server, MySQL for database management, Java for
graphical user interface.

Own works achievement showed in section 3 of the
paper illustrate good preliminary approach on the way to
start developing a fully remote robotic operating system
(in terms of specifically developed virtual environment
for robot off line simulation as well as own programming
language and software modules).

Considering all above, the hardware and software ar-
chitecture for a completely remote laboratory operation
intended to be developed by ourselves may described by
below mentioned features.

Hardware system may include a remote computer,
running Windows or UNIX based operating system.

The only things this computer needs is a web browser
capable of running Java applets, Java platform installed
and a connection to the Internet (Java applets are pre-
ferred because it is browser and operating system inde-
pendent, leaving the user the ability to use its own web
browser and operating system − Windows, Linux,
FreeBSD etc).

The Java applet will be split in more areas. In the
main area a simulation of the entire workspace of the
robot will be displayed while in the left part will be dis-
played a virtual teach pendant. The transformation matrix

98

with the position and the orientation of the end tool ap-
pears also in the left side.

The simulation can be displayed in to modes: a test
simulation, based on user’s inputs from the virtual teach
pendant or a real simulation of the robot based on the
feed-back received from the robot controller and the sen-
sors from the laboratory. In the second case, it is very
important to update with accurate data. On slow internet
connections this could be a very big problem and to solve
it we shell integrate an application to test the internet
speed.

Using HTTP (Hypertext Transfer Protocol) protocol
the browser communicates with the web server located in
the laboratory. On the web server is running Apache
HTTP Server which permits communication on port 80.
The Apache server has another role: it makes the connec-
tion between requests received from the remote computer
and the controller module which communicate directly
with the robot controller. The controller module will be
developed using C++ programming language and it will
run as an Apache module. The controller module also
tests the imputed commands or programs sent by the user
and in case the commands are illegal. If everything is ok,
the user can save the work as a scenario or he can upload
the commands to the robot controller (if the robot is free
of job it will immediately execute the commands, other-
wise the controller module will put the execution on a
waiting queue).

A visual feed-back is also needed, so a couple of
cameras will capture images from the laboratory and will
transmit it to the stream video server.

The access to the main servers will be granted bases
on a username and a password and multiple levels of
accounts will be available. Only the system administra-
tors are able to create users accounts. All this information
and the user’s sessions with their logs and command his-
tories will be stored using the MySQL database engine.

To increase the security of the whole site, a firewall
will be used, so the connection to the server will be al-
lowed from certain IP’s classes. In the start, a single PC
can play many rolls: web server, database server, fire-
wall, and stream server and controller module. In a pro-
duction environment it is best to separate the rolls, every
roll running on its own computer, except the web server

and the controller module (to decrease the application
latency).

REFERENCES

[1] *** http://en.wikipedia.org/wiki/Virtual_reality
[2] Candelas, F.A. et al. (2006). Flexible virtual and remote

laboratory for teaching Robotics, FORMATEX, Badajoz,
Spain.

[3] Huosheng Hu, Lixiang Yu, Pui Wo Tsui, Quan Zhou.
Internet-based Robotic Systems for Teleoperation, Interna-
tional Journal of Assembly Automation, Vol. 21, No. 2.

[4] *** Apache web Server http://www.apache.org
[5] Ngai, L., Newman, W, Liberatore, V.An Experiment in

Internet-Based, Human-Assisted Robotics.
[6] Candelas, F. A., Torres, F., Puente, S., Pomares, J., Segar-

ra, V., Navarrete, J. (2004). A Flexible Java Class Library
for Simulating and Teleoperating Robots, Proc. 11th IFAC
Symposium on Information Control Problems in Manufac-
turing (INCOM 2004), Salvador de Bahía, Brasil, 5−7
Abril.

[7] Torres, F., Candelas, F.A., Puente, S.T., Pomares, J., Gil,
P., Ortiz, F.G. (2006). Experiences with Virtual Environ-
ment and Remote Laboratory for Teaching and Learning
Robotics at the University of Alicante, International Jour-
nal of Engineering Education (Special Issue on Robotics
Education), 22, 4, 766.

[8] Nicolescu, A.F., Enciu, G., Ivan, A., Avram, G.C., Mari-
nescu, D.A. (2009). Wafer manipulating robots – design,
programming and simulation, 2nd WSEAS International
Conference on Visualization, Imaging and Simulation
(VIS'09), Baltimore, USA, November 7−9.

Authors:

PhD, Eng, Alexandru DORIN, Professor, University
"Politehnica" of Bucharest, Department of Machines and
Manufacturing Systems,
PhD, Eng, Adrian Florin NICOLESCU, Professor,
"Politehnica" University of Bucharest, Department of
Machines and Manufacturing Systems,
E-mail: afnicolescu@yahoo.com,
Eng, Stelian POPA, PhD Student, "Politehnica" Univer-
sity of Bucharest, Department of Machines and Manufac-
turing Systems

mailto:afnicolescu@yahoo.com

	2. RELATED WORK
	4. CONCLUSIONS
	REFERENCES

