# MANUFACTURING TECHNOLOGY FOR A NEW TYPE OF PROFILED ROTOR USED BY A ROTATING VOLUMETRIC PUMP 

Daniel BESNEA ${ }^{1}$, Nicolae BĂRAN ${ }^{1, *}$, Antonios DETZORTZIS ${ }^{2}$, Antoaneta BĂRĂSCU ${ }^{\mathbf{2}}$<br>${ }^{1)}$ Prof., Department of Mechanical Engineering and Mechatronics, POLITEHNICA University of Bucharest, Bucharest, Romania<br>${ }^{2)} \mathrm{PhD}$, Department of Mechanical Engineering and Mechatronics, POLITEHNICA University of Bucharest, Bucharest, Romania


#### Abstract

The paper presents the sketch and the functioning principle of the rotating volumetric pump; a computation relation is established for the theoretical volumetric flow transported by the pump. The paper presents a mathematical model that establishes the coordinates ( $x_{i}, y_{i}$ ) of the outline of a profiled rotor. A software that computes these coordinates is developed for a series of rotor dimensions. Based on these coordinates, the 3D model of the rotor is built using the software package CATIA V5. An appropriate post-processor generates a NC Code program written in ISO language, in order to manufacture the rotor on a vertical CNC center. Finally, the operation sheet regarding the design and manufacturing of the profiled rotor is presented. The demonstration model of the profiled rotor will integrate the construction of a rotating volumetric pump.


Key words: rotating piston, profiled rotors, rotating pump.

## 1. INTRODUCTION

Thermic and hydraulic rotating working machines have the main advantages:

- for a working machine (pump, fan, compressor), the motor torque transmitted to the machine shaft is fully used (except to the losses due to friction) for the increase of the pressure of the transported fluid;
- the flow rate of the transported fluid increases proportionally with the constructive dimensions and with the rotation speed of the machine;
- there are no valves or alternating rectilinear motions as in the case of piston machines;
- any fluid substance (pure liquids or liquids with suspensions, waste waters, water + ash, water + sand, pure gases or gases with particles in suspension, wet gases, vapors) will be transported from intake to discharge.
The constructive solution presented in continuation is original [1] considering the following aspects:
- as constructive solution, the shape of the rotors is based on a mathematical model;
-     - as methodology of computation of the volumetric flow rate of the fluid transported by the pump and of its driving power.
Compared to other rotating working machines, this pump transports higher volumetric flow rates for the same constructive dimensions and the same rotation speed [2] .

A functional model of this pump was presented to the $55^{\text {th }}$ World Exhibition of Innovation, Research and New

[^0]Technology, Brussels, "EUREKA 2006", where it obtained a diploma and a gold medal.

## 2. DESCRIPTION OF THE CONSTRUCTIVE SOLUTION AND ESTABLISHMENT OF THE FLOW RATE OF THE FLUID TRANSPORTED BY THE PUMP

The pump consists of two identical profiled rotors ( $A$, $B$ ) which rotate with the same angular speed inside the half-cylinder casings ( $C, D$ ) (Fig. 1).

The synchronous speed of the two motors is guaranteed by the use of two gear wheels which mesh, having the same dividing diameter, and which are mounted on the shafts (E, F) outside the pump [1].

The functioning principle of the rotating volumetric pump with two profiled rotors results from fig. 1.

The suctioned fluid (Fig. 1,a) is transported to the discharge and, after a $90^{\circ}$ rotation of the two rotors, the systems arrives in the position depicted in Fig. 1,b.

The fluid contained in the available volume $V_{u}$ (Fig. $1, b$ ), that is the space between the pistons $3^{\prime}$ and $4^{\prime}$, will be transported to the discharge after a $180^{\circ}$ rotation [3]:

$$
\begin{equation*}
V_{u}=\frac{\pi R_{c}^{2}-\pi R_{r}^{2}}{2} \cdot l\left[m^{3}\right] \tag{1}
\end{equation*}
$$

$R_{c}$ - casing radius [m] ; $R_{r}$ - rotor radius [m]; $l$ - rotor length $[\mathrm{m}]$ (perpendicular on the plane of Fig. 1).

Two such volumes will be transported from intake to discharge during a complete rotation:

$$
\begin{equation*}
\dot{V}_{u}=\pi\left(R_{c}^{2}-R_{r}^{2}\right) l\left[m^{3} / r o t\right] \tag{2}
\end{equation*}
$$

Because the casing radius $\left(R_{c}\right)$ is the sum of the rotor radius $\left(R_{r}\right)$ and piston height $(z)$ :

$$
\begin{equation*}
R_{c}=R_{r}+z \tag{3}
\end{equation*}
$$



Fig. 1. Sketch of the rotating volumetric pump:
A, B - rotors; C, D - half-cylinders; E, F - shafts; 1, 2, 3', $4^{\prime}$ - rotating pistons; $1^{\prime}, 2^{\prime}, 3,4$ - cavities in which penetrate the pistons of the adjacent rotor.


Fig. 2. View of a profiled rotor.
it is obtained that:

$$
\begin{equation*}
\dot{V}_{u}=\pi l z\left(z+2 R_{r}\right)\left[m^{3} / r o t\right] . \tag{4}
\end{equation*}
$$

Because the pump has two identical rotors, the theoretical flow rate of the fluid will be equal to:

$$
\begin{equation*}
\dot{V}_{t}=2 \dot{V}_{u} \cdot \frac{n}{60}=\pi l z\left(z+2 R_{r}\right) \frac{n}{30}\left[m^{3} / \mathrm{s}\right] . \tag{5}
\end{equation*}
$$

where : $n$ - machine rotation speed [r.p.m.].
It can be noticed from (5) that the flow rate transported by the pump is directly proportional with $l, R_{r}, n$ and the square of $z$.

## 3. THE COMPUTATION OF THE OUTLINE OF THE PROFILED ROTOR

Figure 2 presents in the horizontal plane the profiled rotor with the following dimensions [3]:

- Rotor radius $R_{r}=80 \mathrm{~mm}$;
- Height of the rotating piston: $z=40 \mathrm{~mm}$;
- Housing radius: $R_{c}=R_{r}+z=80+40=120 \mathrm{~mm}$;
- Distance cavity shaft axle: 40 mm ;
- Ratio $\frac{z}{R_{c}}=\frac{40}{120}=0.33$

Both the rotating pistons and the cavities are established by a system of equations corresponding to the following zones:

Zone I: The curvilinear profile of the rotating piston A....B.

Zone II: The circular profile of the rotor $B \ldots . C$.
Zone III: The concavity profile $C \ldots D$.

### 3.1. Establishing the coordinates $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ of the curvilinear profile of the piston $(A \rightarrow B)$

The papers [3] and [4] present the mathematical model used in order to establish the computation relations of the coordinates $\left(x_{i}, y_{i}\right)$ of the curvilinear path $(\mathrm{AB})$ of the outline of the rotating piston.

Computation software was developed having the following inputs:

$$
\begin{aligned}
& R_{c}=0.12 \mathrm{~m} ; \\
& z=0.04 \mathrm{~m} ; \\
& R_{r}=0.08 \mathrm{~m} ;
\end{aligned}
$$

$\theta$ varying from $0^{\circ}$ to $46.6^{\circ}$ ( 0 to 0.8116 radians);
$\theta_{2}=17.5^{\circ}$ ( 0.3054 radians).
The following formulas are applied for computing the coordinates [3, 4]:

$$
\begin{gather*}
x=\left[-\left(\frac{R_{r}}{\cos \theta}-R_{r}\right) \sin 2 \theta\right] \cdot \cos \theta_{2}- \\
{\left[-\left(\frac{R_{r}}{\cos \theta}-R_{r}\right) \cos 2 \theta+\frac{R_{r}}{\cos \theta}\right] \cdot \sin \theta_{2}}  \tag{6}\\
y=-\left\{\begin{array}{l}
{\left[-\left(\frac{R_{r}}{\cos \theta}-R_{r}\right) \sin 2 \theta\right] \cdot \sin 2 \theta_{2}+} \\
{\left[-\left(\frac{R_{r}}{\cos \theta}-R_{r}\right) \cos 2 \theta+\frac{R_{r}}{\cos \theta}\right] \cdot \cos \theta_{2}}
\end{array}\right\} ; \tag{7}
\end{gather*}
$$

Table 1 presents the coordinates $\left(x_{i}, y_{i}\right)$ of the points that generate the curvilinear path $A$ (point 1) $\rightarrow B$ (point 93), obtained by varying the angle $\theta$ with increments of $0.5^{\circ}$.

The coordinates of the rotor outline points situated on the path $A \rightarrow B$

| No. | $\boldsymbol{x}$ | $y$ | No. | $\boldsymbol{x}$ | $y$ | No. | $\boldsymbol{x}$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1(A) | 0.00000 | 0.12000 | 42 | 0.02166 | 0.09231 | 83 | 0.02421 | 0.07702 |
| 2 | 0.00075 | 0.11923 | 43 | 0.02189 | 0.09173 | 84 | 0.02419 | 0.07689 |
| 3 | 0.00159 | 0.11855 | 44 | 0.02210 | 0.09116 | 85 | 0.02417 | 0.07678 |
| 4 | 0.00242 | 0.11787 | 45 | 0.02230 | 0.09060 | 86 | 0.02415 | 0.07668 |
| 5 | 0.00323 | 0.11718 | 46 | 0.02249 | 0.09004 | 87 | 0.02413 | 0.07659 |
| 6 | 0.00402 | 0.11648 | 47 | 0.02267 | 0.08950 | 88 | 0.02411 | 0.07651 |
| 7 | 0.00479 | 0.11579 | 48 | 0.02284 | 0.08896 | 89 | 0.02410 | 0.07644 |
| 8 | 0.0555 | 0.11509 | 49 | 0.02299 | 0.08843 | 90 | 0.02408 | 0.07639 |
| 9 | 0.00629 | 0.11439 | 50 | 0.02314 | 0.08791 | 91 | 0.02407 | 0.07635 |
| 10 | 0.00701 | 0.11369 | 51 | 0.02328 | 0.08740 | 92 | 0.02406 | 0.07632 |
| 11 | 0.00772 | 0.11299 | 52 | 0.02341 | 0.08690 | 93 (B) | 0.02406 | 0.07630 |
| 12 | 0.00841 | 0.11229 | 53 | 0.02353 | 0.08642 |  |  |  |
| 13 | 0.00908 | 0.11158 | 54 | 0.02364 | 0.08594 |  |  |  |
| 14 | 0.00973 | 0.11088 | 55 | 0.02374 | 0.08547 |  |  |  |
| 15 | 0.01037 | 0.11018 | 56 | 0.02383 | 0.08501 |  |  |  |
| 16 | 0.01099 | 0.10947 | 57 | 0.02391 | 0.08456 |  |  |  |
| 17 | 0.01159 | 0.10877 | 58 | 0.02399 | 0.08413 |  |  |  |
| 18 | 0.01218 | 0.10807 | 59 | 0.02406 | 0.08370 |  |  |  |
| 19 | 0.01275 | 0.10737 | 60 | 0.02412 | 0.08329 |  |  |  |
| 20 | 0.01330 | 0.10667 | 61 | 0.02417 | 0.08289 |  |  |  |
| 21 | 0.01384 | 0.10597 | 62 | 0.02422 | 0.08249 |  |  |  |
| 22 | 0.01436 | 0.10528 | 63 | 0.02426 | 0.08211 |  |  |  |
| 23 | 0.01487 | 0.10458 | 64 | 0.02429 | 0.08174 |  |  |  |
| 24 | 0.01536 | 0.10389 | 65 | 0.02432 | 0.08139 |  |  |  |
| 25 | 0.01583 | 0.10321 | 66 | 0.02435 | 0.08104 |  |  |  |
| 26 | 0.01629 | 0.10252 | 67 | 0.02436 | 0.08071 |  |  |  |
| 27 | 0.01673 | 0.10185 | 68 | 0.02438 | 0.08039 |  |  |  |
| 28 | 0.01716 | 0.10117 | 69 | 0.02439 | 0.08008 |  |  |  |
| 29 | 0.01757 | 0.10050 | 70 | 0.02439 | 0.07978 |  |  |  |
| 30 | 0.01797 | 0.09984 | 71 | 0.02439 | 0.07949 |  |  |  |
| 31 | 0.01835 | 0.09917 | 72 | 0.02439 | 0.07922 |  |  |  |
| 32 | 0.01872 | 0.09852 | 73 | 0.02438 | 0.07896 |  |  |  |
| 33 | 0.01908 | 0.09787 | 74 | 0.02437 | 0.07871 |  |  |  |
| 34 | 0.01942 | 0.09723 | 75 | 0.02436 | 0.07847 |  |  |  |
| 35 | 0.01974 | 0.09659 | 76 | 0.02435 | 0.07825 |  |  |  |
| 36 | 0.02006 | 0.09596 | 77 | 0.02433 | 0.07803 |  |  |  |
| 37 | 0.02036 | 0.09533 | 78 | 0.02431 | 0.07783 |  |  |  |
| 38 | 0.02064 | 0.09471 | 79 | 0.02429 | 0.07765 |  |  |  |
| 39 | 0.02092 | 0.09410 | 80 | 0.02427 | 0.07747 |  |  |  |
| 40 | 0.02118 | 0.09350 | 81 | 0.02425 | 0.07731 |  |  |  |
| 41 | 0.02143 | 0.09290 | 82 | 0.02423 | 0.07716 |  |  |  |

### 3.2. Establishing the coordinates $\left(x_{i}, y_{i}\right)$ of the circular path $(B \rightarrow C)$

Use In order to find the coordinates $\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}}\right)$ that generate the outline of the circular path $B \rightarrow C$ (Fig. 2) of the rotor, computation software was developed having the following inputs:
$R_{c}=0.12 \mathrm{~m} ;$
$z=0.04 \mathrm{~m}$;
$R_{r}=0.08 \mathrm{~m}$;
$\theta$ - varying from $17.5^{\circ}$ to $72.5^{\circ}$ ( 0.3054 to 1.265 radians).

The following formulas are applied for computing the coordinates of the profile [3, 4]:

$$
\begin{aligned}
& x=R_{r} \cdot \sin \theta ; \\
& x=R_{r} \cdot \cos \theta ;
\end{aligned}
$$

The coordinates of the points from $B$ (94) to $C$ (150) are presented in Table 2.

The coordinates of the rotor outline points situated on the path $\mathbf{B} \rightarrow \mathbf{C}$

| No. | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\mathbf{N o .}$ | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\mathbf{N o .}$ | $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94 | 0.02406 | 0.07630 | 116 | 0.05035 | 0.06217 | 138 | 0.06997 | 0.03878 |
| 95 | 0.02472 | 0.07608 | 117 | 0.05142 | 0.06128 | 139 | 0.07064 | 0.03756 |
| 96 | 0.02605 | 0.07564 | 118 | 0.05248 | 0.06038 | 140 | 0.07128 | 0.03632 |
| 97 | 0.02736 | 0.07518 | 119 | 0.05353 | 0.05945 | 141 | 0.07190 | 0.03507 |
| 98 | 0.02867 | 0.07469 | 120 | 0.05456 | 0.05852 | 142 | 0.07250 | 0.03381 |
| 99 | 0.02997 | 0.07417 | 121 | 0.05557 | 0.05755 | 143 | 0.07308 | 0.03254 |
| 100 | 0.03126 | 0.07364 | 122 | 0.05657 | 0.05657 | 144 | 0.07364 | 0.03126 |
| 101 | 0.03254 | 0.07308 | 123 | 0.05755 | 0.05557 | 145 | 0.07417 | 0.02997 |
| 102 | 0.03381 | 0.07250 | 124 | 0.05851 | 0.05456 | 146 | 0.07469 | 0.02867 |
| 103 | 0.03507 | 0.07190 | 125 | 0.05945 | 0.05353 | 147 | 0.07518 | 0.02736 |
| 104 | 0.03632 | 0.07128 | 126 | 0.06038 | 0.05248 | 148 | 0.07564 | 0.02605 |
| 105 | 0.03756 | 0.07064 | 127 | 0.06128 | 0.05142 | 149 | 0.07608 | 0.02472 |
| 106 | 0.03878 | 0.06997 | 128 | 0.06217 | 0.05035 | $150(C)$ | 0.07630 | 0.02406 |
| 107 | 0.04000 | 0.06928 | 129 | 0.06304 | 0.04925 |  |  |  |
| 108 | 0.04120 | 0.06857 | 130 | 0.06389 | 0.04815 |  |  |  |
| 109 | 0.04239 | 0.06784 | 131 | 0.06472 | 0.04702 |  |  |  |
| 110 | 0.04357 | 0.6709 | 132 | 0.06553 | 0.04589 |  |  |  |
| 111 | 0.04474 | 0.06632 | 133 | 0.06632 | 0.04474 |  |  |  |
| 112 | 0.04589 | 0.06553 | 134 | 0.06709 | 0.04357 |  |  |  |
| 113 | 0.04702 | 0.06472 | 135 | 0.06784 | 0.04239 |  |  |  |
| 114 | 0.04815 | 0.06389 | 136 | 0.06857 | 0.04120 |  |  |  |

### 3.3. Establishing the coordinates $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ of the cavity profile (path $C \rightarrow D$ )

For these coordinates, a mathematical model was elaborated [3, 4] and subsequently computation software was developed having the following inputs:
$R_{c}=0.12 \mathrm{~m}$;
$z=0.04 \mathrm{~m}$;
$R_{r}=0.08 \mathrm{~m}$;
$\theta$ - varying from $0^{\circ}$ to $29^{\circ}$ ( 0 to 0.5061 radians).
The following formulas are applied for computing the coordinates of the profile [3, 4]:

$$
\begin{gathered}
x=-\left[2 \cdot \cos \theta \cdot\left(R_{c} \cdot \cos \theta-R_{r}\right)-R_{c}\right] \\
y=2 \cdot\left(R_{c} \cdot \cos \theta-R_{r}\right) \cdot \sqrt{1-\cos ^{2} \theta} .
\end{gathered}
$$

The coordinates of the points from $C$ (151) to $D$ (189) are presented in Table 3.

After establishing the whole set of coordinates, it can be noticed that, in the first quarter of the $x O y$ plane (Fig. 2), the resulted outline is ABCD; the path $A b C d$ is constructed symmetrically about the axis Oy (Fig. 1).

Table 3
The coordinates of the rotor outline points situated on the path $\mathbf{C} \rightarrow \mathrm{D}$

| No. | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{N o .}$ | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{N o .}$ | $\mathbf{x}$ | $\mathbf{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151 | 0.07635 | 0.02420 | 173 | 0.05204 | 0.01949 | 186 | 0.04044 | 0.04417 |
| 152 | 0.07417 | 0.02437 | 174 | 0.05063 | 0.01859 | 187 | 0.04019 | 0.00279 |
| 153 | 0.07203 | 0.02444 | 175 | 0.04929 | 0.01763 | 188 | 0.04005 | 0.00140 |
| 154 | 0.06993 | 0.02442 | 176 | 0.04804 | 0.01661 | $189(\mathrm{D})$ | 0.04000 | 0.00000 |
| 155 | 0.06787 | 0.02431 | 177 | 0.04688 | 0.01554 |  |  |  |
| 156 | 0.06587 | 0.02410 | 178 | 0.04580 | 0.01442 |  |  |  |
| 157 | 0.06392 | 0.0238 | 179 | 0.04481 | 0.01326 |  |  |  |
| 158 | 0.06203 | 0.02342 | 180 | 0.04390 | 0.01205 |  |  |  |
| 159 | 0.06020 | 0.02296 | 181 | 0.04309 | 0.01081 |  |  |  |
| 169 | 0.05843 | 0.02241 | 182 | 0.04237 | 0.00953 |  |  |  |
| 170 | 0.05672 | 0.02179 | 183 | 0.04175 | 0.00822 |  |  |  |
| 171 | 0.05509 | 0.02109 | 184 | 0.04131 | 0.00689 |  |  |  |
| 172 | 0.05352 | 0.02032 | 185 | 0.04078 | 0.00554 |  |  |  |

Subsequently the whole outline of the rotor is obtained by mirroring the outline $D C B A b c d$ on the $O x$ axis [5, 6].

## 4. MANUFACTURING TECHNOLOGY OF THE PROFILED ROTOR

The following dimensions are given, according to [3]:
$R_{r}=80 \mathrm{~mm} ;$
$Z=40 \mathrm{~mm}$;
$R_{c}=R_{r}+z=120 \mathrm{~mm}$.
The CAD design, as well as the CAM manufacturing for the numerically-controlled machines with 3 to 5 axes, used the software package CATIA V5 [7, 8].

This software package features a powerful postprocessing engine that covers the whole manufacturing process, starting from the generation of the processing tool path till the NC Code program generation. Based on the coordinates presented in Tables 1, 2 and 3, using the module Sketcher, the item "Point by Using Coordinates" is selected from the Profile toolbar. The points are inserted in the sketch via their Cartesian coordinates, as shown in Fig. 3.

The toolset Spline is used for joining the defined points. The Transformation tool, with the help of Symmetry commands, allows the complete definition of the rotor outline (Fig. 4).

The $Z$-axis extruding is achieved using a closedcontour sketched profile (Sketcher). The calling of the


Fig. 3. Defining the outline via Cartesian coordinates and using the Spline application.


Fig. 4. Definition of the rotor profile.


Fig. 5. The three-dimension model of the rotor created using the Pad option.
command "Pad Definition" allows the extruding in a direction normal to the sketch plane.

Another solution is the activation of the option "Mirrored extend" that leads to the extruding of the profile in both directions of the normal, as shown in Fig. 5.

After the definition of the rotor geometry, the working zone corresponding to the NC manufacturing process is opened in a CAT Product document that will initiate a new operation in the manufacturing process and will add a new entity to the structure Part Operation.

The operation parameters can be modified in the dialog box Part Operation, where the type of machinetool can be chosen (Machine - editor) and the characteristic parameters of the processing machine are specified (numerical control parameters, rotation parameters, parameters corresponding to the tool changing process etc.) (Fig. 6).

In order to associate a reference axis to the manufacturing system during the operation, the icon "Machine axis" is activated.

The "Product" icon is pressed in order to associate an existing product to a certain operation.

The module "Manufacturing Program" allows defining of distinct technological operations in function of the surface category and of the type of processing (roughing or finishing).


Fig. 6. Selecting the type of processing machine in function of the axis number.


Fig. 7. Simulation of the milling operation using the Video module.


Fig. 8. Processing tool trajectories, using the Photo module.


Fig. 9. Generation of the NC Code program.
According to the geometric features of the rotor, the option ZLevel is chosen (manufacturing of a vertical surface) with a $\emptyset 10$ cylindrical mill (Fig. 7).

When the icon "Generate NC Code" is activated, the machine code needed for the manufacturing process is generated. The active window presented in Fig. 8 is opened. The document CAT Process is selected from the page IN/OUT. The path of the file that will be generated (Output File) is specified. The item "NC Code" is selected from the menu "Data Type". The type of the post-processor corresponding to the numerical control manufacturing center (Fanuc 0) is selected from the page "NC Code" (Fig. 9, Table 4).

Table 4
Example of a program written in NC Code.

| $\% 2000$ (rotor) | $\ldots . . . . . . . . . . . . . . . . . . . . . . . .$. |
| :---: | :---: |
| N1 M6T1 | N7016 X-20.6757 Y104.9852 |
| N2 G54G90S2000M3 | N7017 X-18.4829 Y108.1293 |
| N3 G1G43H\#4120Z259F3000 | N7018 X-15.7126 Y111.6066 |
| N4 X-12.8343 Y114.851 | N7019 X-12.8343 Y114.851 |
| N5 G43 Z9. H1 | N7020 Z-40. |
| N6 G1 Z-1.F300. | N7021 G0 Z1. |
| N7 X-9.7161Y118.0405 F1000 | N7022 M30 |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. | $\%$ |

## 5. CONCLUSIONS

In the case of this type of rotating volumetric pump, the volumetric flow rate of the transported fluid is influenced by the following factors:

- constructive parameters: $l, z, R_{r}$;
- functional parameters : $n$.

The constructive solution is simple and can be used for the transport of oil products. The pump can be used for the transport of waste waters and of polyphase fluids.

The pump can be easily achieved because the manufacturing technology of the rotors and casing is based on a CNC program; the parts are manufactured on a CNC centre.

This type of rotating machine has real advantages compared to other types of profiled rotor machines.

## REFERENCES

[1] N. Băran, Gh. Băran, P. Staicu, D. Constantin, Pattent Application no. A00107/2006 named: "Rotating volumetric pump with profiled rotors", issued on 20.02.2006 by the Romanian State Office for Inventions and Trademarks - Bucharest Branch.
[2] N. Băran, Gh. Băran, Comparative study between Roots compressor and a new type of compressor (in Romanian), Romanian Journal of Chemistry, Vol. 54, No. 11, 2003, pp. 919-922.
[3] C.N.M.P. Program 4 - Partnerships in Priority Fields Firm Cooperation Agreement concluded with the Institute for Conception, Research and Design in the Field of Thermo-Energetic Equipment "Oskar Von Miller" ICCPET for the achievement of the research project no. 22 - 093/2008 with the title ''Small power co-generation plant composed of a biomass steam boiler - thermic steam machine - electric generator".
[4] N. Băran, A. Motorga, A. Costache, Computation elements regarding the architecture of a profiled rotor used in the construction of fans (in Romanian), Rev. Termotehnica, No. 1, 2008, ISSN 1222-4057, pp. 59-63.
[5] N. Băran, Thermic machines - Machines with profiled rotors, Machines with blades (in Romanian), MATRIXROM Publishing House, ISBN 973-685307-1, Bucharest 2003.
[6] CNCSIS Grant, 4-th research theme, Annex Ia, CNCSIS Code 54, Contract ME 16-06-03, Rotary working machine with profiled rotors for polyphase fluids, 2006.
[7] O. Donţu, Technologies and manufacturing systems used in mechatronics, PRINTECH Publishing House, Bucharest, 2003.
[8] I.G. Ghionea, Computer Aided Design in Catia V5. Theoretical elements and applications, Bren Publishing House, Bucharest, 2007.


[^0]:    * Corresponding author: 313, Splaiul Independentei, 060042, Bucharest, Romania
    Tel.:0213181019
    Fax:0213181019
    E-mail addresses: d_bes@yahoo.com (D. Besnea)

