
  

 
 

 
Proceedings in Manufacturing Systems, Volume 6, Issue 3, 2011 

 

 
ISSN 2067-9238 

 
 

TECHNOLOGICAL RELIABILITY ANALYSIS WITH THE  
MULTIVARIATE STATISTICS  

 
Adrian Stere PARIS1,*, Ioan TĂNASE2, Constantin TÂRCOLEA 3  

 
1) PhD, Assoc. Prof., Department of Materials Technology and Welding, University Politehnica, Bucharest, Romania  

2) PhD, Prof., Machines and Production Systems Department, University “Politehnica” of Bucharest, Romania 
3) PhD, Prof., Department of Mathematics, University Politehnica of Bucharest, Romania 

 
 

Abstract: The lifetime evolution of the manufacturing accuracy of the machine-tools, defined as technolo-
gical reliability, is an important research domain. The chosen practical case is connected with the accu-
racy of a set of universal milling machines. A pre-selection of field data using the Spearman technique 
was developed. Five characteristics of manufacturing accuracy were selected from the field experimental 
data for a detailed analysis. After a brief introduction in the multivariate analysis, the main side of the 
paper covers a dimensional reduction of the accuracy attributes. Based on the factor analysis method, us-
ing XLSTAT 7.5.2 software and determining the numbers of factors for a given level of significance, a 
given alpha risk is achieved. 
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1.  INTRODUCTION  1 
 

The reliability and the safety analysis in the assess-
ment of complex manufacturing systems are becoming a 
more difficult task. Productivity and accuracy of ma-
chine tools are important competition aspects. Rapidly 
changing operating conditions for machine tools, howev-
er, make it difficult to increase productivity and accura-
cy. In the manufacture of parts, increasingly small batch 
sizes have to be produced economically and yet accurate-
ly. 

Each machining operation creates a feature which has 
certain geometric variations compared to its nominal 
geometry. Designers normally give design tolerance 
specifications on the nominal value, to specify how large 
these variations are allowed to be. One needs to estimate 
accuracy of various manufacturing processes in order to 
verify whether or not a given process plan will produce 
the desired design tolerances [5, 6]. In comparison with 
usual sense of reliability, the geometric errors of machine 
tools are much more difficult to observe and it needs a 
new term to describe this situation.   

The technological reliability at the moment t can be 
quantitatively defined as the probability of a manufactur-
ing equipment (namely a machine-tool) to maintain her 
working accuracy limits by the time t. This means to 
check the machine-tool accuracy at different time mo-
ments and establish the corresponding function of tech-
nological reliability [5, 6]. It follows a short description 
of the experimental researches of the authors in the field 
of technological reliability of a family of milling ma-
chines [5]. 
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The results were processed using some applications 
of multivariate data analysis, especially correlation 
theory and factor analysis. 

Multivariate analysis is used to denote the study of 
data which are multidimensional in the sense that each 
object bears the values of several characteristics of inter-
est. In order to perform multivariate exploratory statis-
tics, these data must be interpreted as an 
attributes/objects table [7].  Multivariate data analysis 
contains two classes of methods: analyzing data and 
advanced data analysis. In the first class are, among oth-
ers, Factor Analysis (FA), Principal Component Analysis 
(PCA), Biplot, Discriminant analysis (DA), Correspon-
dence Analysis (CA), Multiple Correspondence Analysis 
(MCA), Multidimensional Scaling (MDS), Agglomera-
tive Hierarchical Clustering (AHC), k-means Clustering, 
Univariate Clustering. The second group contains: Ca-
nonical Correspondence Analysis(CCA and partial 
CCA), Generalized Procrustean Analysis(GPA), Multiple 
Factor Analysis (MFA), Redundancy analysis (RDA), 
Coordinate Analysis,  useful for a variety of applications, 
ranging from ecology to marketing [2, 3]. An important 
branch of multivariate analysis is factor analysis. 

An important branch of multivariate analysis is factor 
analysis. The kernel of Factor Analysis is to identify a 
number of underlying factors that explains the relation-
ship between correlated variables and, in the same time, 
to have a smaller alpha risk [1].  

Factor Analysis is deeply related to Principal Com-
ponent Analysis, but while the Factor Analysis assumes 
that the correlation between variables is due to a set of 
latent variables that are being measures by the variables 
[6], Principal Component Analysis is a method for reduc-
ing the number of variables and is not based on the idea 
that there are underlying factors, that are being measured 
[10].  
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2.  MATHEMATICAL FORMALIZATION OF THE 
PROBLEM  

 

At the beginning the data are given, as a n*p-matrix, 
objects/attributes, a table y = (yij), i = 1, 2, ..., n; j = 1, 2, 
…, m. Each row of the matrix represents an object (indi-
vidual) with his attributes, and each column is an attrib-
ute (property, variable). The number of observable at-
tributes gives the dimension of the initial representation 
space of the objects. With other words it is considered an 
m-dimensional coordinate system, each coordinate being 
an attribute. Instead of realer attributes the FA uses new 
factors, but only a few, which are artificial ones [8].  

The problem can be mathematical formulate; it is 
supposed that yt = (y1, y2, …, ym) is a random vector with 
the center of dispersion m and the covariance matrix ∑. 
The FA procedures try to identify new uncorrelated vari-
ables z1, z2, …, zm, whose variance decreases when the 
index increases from 1 to m [12]. The first FC explains 
the maximum variance in the data; the second FC ex-
plains the maximum variance that has not been ac-
counted by the first FC, and so one. The FA solves the 
problem of finding the directions of the greatest variance 
of the linear combination of the old coordinates. In other 
words it seeks the a set of the coefficient vectors a1, a2, 
…, ak, each new variable is a linear combination of the 
initial variables. The first principal component: 
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is chosen, so that: 
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is maximal, under the restriction:  
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To find the conditional extreme of a function, given a 

relationship it is used a so-called Lagrange function: 
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where λ is an undetermined multiplier. The necessary 
conditions for the extreme are: 
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The directions of the new coordinate axes, called 

principal components, or factors, have been chosen, in 
such a way, that the deformations of the original cloud 
implied by this representation are minimal [9]. The coor-
dinates of the objects (samples) in the new system are 
called scores. The corresponding relationships between 
the original variables and the new principal components 
are called loadings.  
 
3.  MATERIALS AND METHOD  CASE STUDY 
 

The case study is referring to technological reliability 
Rth(t) of a universal milling machine with a high level of 
geometric accuracy parameters.  

The criterion of the time variation of the geometric 
accuracy was selected for the establishing of technologi-
cal reliability indicators. It was monitored a set of uni-
versal milling machines in the factories working condi-
tions for a time span for the reliability evaluations. Espe-
cially a set of measurements was made for the accuracy 
of geometry.  

In the first step was applied Spearman’s test for the 
field data processing. In statistics, Spearman's rank corre-
lation coefficient often denoted by the Greek character ρ 
or as rs, is a non-parametric measure of statistical depen-
dence between two variables. It assesses how well the 
relationship between two variables can be described 
using a monotonic function. If there are no repeated data 
values, a perfect Spearman correlation of +1 or −1 occurs 
when each of the variables is a perfect monotone func-
tion of the other. 

In applications where ties are known to be absent, a 
simpler procedure can be used to calculate ρ [4]. Differ-
ences di = xi − yi between the ranks of each observation 
on the two variables are calculated, and ρ is given by: 
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As a result of the Spearman test [4] it were selected 

the following accuracy checks: 
• parallelism between the table surface and and the 

direction of her longitudinal movement (B3 norm 
test); 

•  perpendicularity between of the milling head rotation 
axis and the table surface in both directions longitu-
dinal and transversal (C3a and C3b norm test); 

• parallelism between upper surface and base surface 
when machining with the vertical milling head (K3b 
norm test); 

• perpendicularity between side surfaces and base sur-
face when machining with the horizontal milling head 
(K2b norm test).  
The data are presented in Table 1.  
As another statistical preliminary test was applied the 

ANOVA method, to verify if the attributes are statistical 
identical; the numerical results shows that the null hy-
pothesis it is not rejected, based on the F-test and p-value 
(Table 2).  

In this situation follows the second step. The chosen 
features  are  detailed  using multivariate statistics, Factor 
Analysis,   with   XLSTAT  7.5.2  software,  a  Microsoft 

 
 
 

Table 1 
Geometric accuracy experiments results 

 

No. C3lg C3tr B3 K3b K 2b 
1 0.01 0.01 0.008 0.014 0.025 
2 0.03 0.02 0.012 0.025 0.008 
3 0.1 0.19 0.12 0.12 0.1 
4 0.055 0.15 0.06 0.02 0.02 
5 0.48 0.14 0.04 0.1 0.15 
6 0.14 0.19 0.1 0.2 0.04 
7 0.025 0.07 0.027 0.03 0.07 
8 0.042 0.015 0.03 0.08 0.03 
9 0.028 0.017 0.01 0.15 0.13 
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Table 2 
Results of ANOVA test 

 

Source of 
variation 

SS df MS F P 
value 

Fcrit 

Between 
Groups 

0.017 4 0.0043 0.6 0.67 2.61 

Within 

Groups  

0.293 40 0.0073    

Total 0.31 44     

 
Table 3 

Mean and standard deviation of the columns 
 

Variables  Mean Standard 
deviation 

1  0.101 0.148 

2 0.089 0.078 

3 0.045 0.041 

4 0.082 0.066 

5 0.064 0.052 

 
Table 4 

Correlation matrix 
 

 Var1 Var2 Var3 Var4 Var5 
Var1 1 0.471 0.209 0.302 0.619 
Var2 0.471 1 0.908 0.448 0.232 
Var3 0.209 0.908 1 0.529 0.100 
Var4 0.302 0.448 0.529 1 0.473 
Var5 0.619 0.232 0.100 0.473 1 

 
Table 5 

Reproduced correlation matrix 
 

 Var1 Var2 Var3 Var4 Var5 
Var1 0.762 0.471 0.208 0.303 0.618 
Var2 0.471 0.981 0.908 0.448 0.232 
Var3 0.208 0.908 0.992 0.529 0.101 
Var4 0.303 0.448 0.529 0.642 0.472 
Var5 0.618 0.232 0.101 0.472 0.722 

 
Excel add-in [11] and the obtained results are presented 
bellow. Data processing needed 25 iterations for a 0.001 
convergence. Table 3 gives a statistical overview of the 
geometric accuracy checks, called variables in the fol-
lowing calculi. 

It results (Table 3) that the variation coefficient,  
a normalized measure of dispersion of a probability dis-
tribution, also known as unitized risk, are comparable for 
all selected attributes of this milling machines set. 

In bold are the significant values (except diagonals) at 
the level of significance α = 0.05 (two tailed test). 
 When the method converges with a sufficient preci-
sion, the values of the main diagonal are equal to specific 
variances. 

In bold there are significant values (except diagonals) 
at the level of significance α = 0.05 (two tailed test). 

If this model is correct, it is not possible that the fac-
tors will extract all variance from the items; rather, only 
that proportion that is due to the common factors and 
shared by several items. In the language of factor analy-
sis, the proportion of variance of a particular item that is 
due to common factors (shared with other items) is called 
communality. Therefore, an additional task is to estimate 

the communalities for each variable, that is, the propor-
tion of variance that each item has in common with other 
items (Fig. 1 and Table 6). 

Number of removed trivial eigenvalues: 2. 
The rectangles (Fig. 1) show the fraction of the total 

variance of the primary data for each factor.  
The three largest eigenvalues are 2.6, 1.1 and 0.4 

(Fig. 2 and Table 7). This suggests that the corresponding 
PC’s (F1, F2, F3) are enough for the selection. 
 The representation of the data in a limited number of 
dimensions (three dimensions in this case) facilitates to a 
great extent this analysis.  

The factor loadings, also called component loadings 
in FA, are the correlation coefficients between the va-
riables (rows) and factors (columns). Similarly to Pear-
son's r coefficient the squared factor loading is the per-
cent   of   variance   in   that  indicator  variable explained 

 
Table 6 

Maximum change in SQRT 
(communality) 

 

Iteration  SQRT 
(communality) 

1  0.281 
2 0.053 
3 0.030 
4 0.018 
5 0.011 
6 0.007 
7 0.005 
8 0.003 
9 0.002 
10 0.001 
11 0.001 

 
Table 7 

Eigenvalues 
 

 F1 F2 F3 
Eigenvalue 2.599 1.098 0.402 
Total%variance 51.74 21.969 8.046 
Cumulative% 51.974 73.944 81.990 
Common %variance 63.391 26.795 9.813 
Cumulative% 63.391 90.187 100.00 

 

 
 

Fig. 1. SQRT change with iteration. 
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by the factor. To get the percent of variance in all the 
variables accounted for by each factor, add the sum of 
the squared factor loadings for that factor (column) and 
divide by the number of variables (Table 10).  

 

 
 

Fig. 2. Eigenvalues. 

 

 
 

Fig. 3. Variables plot with F1 and F2 axis. 

 
Table 8 

Eigenvectors 
 

 F1 F2 F3 
Var1 0.379 0.502 −0.527 
Var2 0.562 −0.300 −0.94 
Var3 0.520 −0.507 0.118 
Var4 0.406 0.097 0.711 
Var5 0.324 0.625 0.219 

 
Table 9 

Factor loadings 
 

Var 

F1 F2 F3 

Initial 
com-
munal-
ity 

Final 
com
mu-
nality 

Sp. 
var. 
 

V1 0.611 0.526 −0.334 0.657 0.762 0.238 
V2 0.905 −0.315 −0.250 0.918 0.981 0.019 
V3 0.839 −0.532 0.075 0.914 0.992 0.008 
V4 0.655 0.102 0.451 0.522 0.642 0.358 
V5 0.523 0.655 0.139 0.517 0722 0.278 

The observations (numerical results of the geometric 
accuracy tests) investigation (Table 11 and Figs. 5 and 6) 
(herein below having the axes F1 and F2 − Fig. 5, F1 and 

 

 
 

Fig. 4. Variables plot with F1 and F3 axis. 
 

 
 

Fig. 5. Observations plot with F1 and F2 axis. 
 

Table 10 
Standardized factor score coefficients 

 

 F1 F2 F3 
Var1 0.178 0.327 −0.069 
Var2 0.372 0.141 −1.876 
Var3 0.373 −0.882 1.588 
Var4 0.129 0.214 0.328 
Var5 0.228 0.406 0.304 

 
Table 11 

Estimated factor scores 
 

 F1 F2 F3 
Obs1 −1.133 −0.060 −0.081 
Obs2 −1.078 −0.182 −0.219 
Obs3 1.402 −1.040 0.909 
Obs4 0.057 −0.859 −1.429 
Obs5 1.066 1.781 −1.008 
Obs6 1.158 −0.727 0.152 
Obs7 −0.425 0.074 −0.442 
Obs8 −0.717 −0.205 1.004 
Obs9 −0.331 1.216 1.115 
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F3 − Fig. 6) shows a projection of the initial variables in 
the factors space. In Fig. 5 the observations are in major-
ity close to the centre and variables 1, 2, 3, 5, 6 are  sig-
nificantly correlated with F1, and variables 3, 5, 9 are 
correlated with F2 . This can be confirmed either by 
looking at the correlation matrix.  

Next, it is applied the varimax rotation, that has 
changed the way each factor explains part of the va-
riance. The varimax rotation makes the interpretation 
easier by maximizing the variance of the squared factors 
loadings by column. For a given factor, high loadings 
become higher, low loadings become lower, and inter-
mediate loadings become either lower or higher. 

Once the results have been obtained, they may be 
transformed in order to make them easier to interpret, for 
example by trying to arrange that the coordinates of the 
variables against the factors are either high (in absolute 
value), or close to zero.  

 

 
 

Fig. 6. Observations plot with F1 and F3 axis. 
 

 
 

Fig. 7. Variables plot with F1 and F2 axis after the Varimax 
rotation. 

 
 

Table 12 
Rotated matrix 

 

 F1 F2 F3 

F 1 0.759 0.488 0.431 
F 2 −0.609 0.767 0.204 

 
 

Fig. 8. Observations plot with F1 and F2 axis after the Varimax 
rotation. 

 
Table 13 

Total % variance after Varimax rotation 
 

 F1 F2 F3 
Total%variance 46.979 32.536 20.485 
Cumulative% 46.979 79.515 100.00 

 
 Table 14 

Factor loadings after Varimax rotation 
 

Var F1 F2 F3 

V1 0.221 0.841 0.077 
V2 0.936 0.305 0.106 
V3 0.943 −0.030 0.319 
V4 0.331 0.209 0.699 
V5 −0.034 0.699 0.481 

 
Table 15 

Standardized rotated factor score coefficients 
 

Var F1 F2 F3 

V1 −0.048 0.367 0.083 
V2 0.629 1.073 −1.460 
V3 0.454 −1.158 1.376 
V4 −0.108 0.090 0.388 
V5 −0.145 0.296 0.449 

Table 16 
Estimated factor scores after  

Varimax rotation 
 

 F1 F2 F3 
Obs1 −0.805 −0.564 −0.572 
Obs2 −0.657 −0.574 −0.695 
Obs3 1.487 −0.493 1.191 
Obs4 0.896 −0.034 −1.407 
Obs5 −0.042 2.306 −0.063 
Obs6 1.287 −0.056 0.484 
Obs7 −0.265 0.034 −0.556 
Obs8 −0.651 −0.926 0.531 
Obs9 −1.249 0.306 1.086 

 
4.  CONCLUSIONS 
 

The paper presents a kind of useful procedure in the 
experimental researches case, offering a simplification of 
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tests and of consequent effort. Nevertheless at the first 
sight seems to present a major difficulty for engineering 
practice, due to the complex mathematical formulation, 
but in reality, how it was illustrated in the article, 
processing the data with a specialized software offers  
rapid solutions. The presented example, on the testing of 
geometrical accuracy of machine tools, targeting the 
following calculus of the technological reliability, was a  
stable research domain for the authors, starting from 70s 
[4 and 5]. 

As model development it is important to compare the 
outputs of the Factor Analysis to those of the Principal 
Component Analysis (PCA) [2]. In work [7] it is applied 
the technique of PCA for reducing the number of va-
riables by finding artificial variables, using Pearson and 
Jöreskog [9] procedures. 

Depending of the chosen dimension and technique is 
resulted different risks, as proportion of neglected 
dimensions in the general variance. It can say that the 
procedure can be choosing for each practical application. 
 Usually in the first stage, for each check, there are 
taken into consideration as many accuracy tests as possi-
ble. In the second stage, based on FA, there were chosen 
two or three, given by the principal components. An 
artificial subspace with three (two) dimensions [10] with 
XLSTAT 2011 software is developed in the present re-
search. The initial attributes for each tool should be ex-
pressed with a precision of 80% as function of two artifi-
cial axes. The application of this model simplifies the 
technological reliability evaluation. The presented 
method enables many other possible extensions in the 
exploratory field analysis of reliability. 
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