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Abstract: The paper deals with the milling force modelling concerning average and maximum forces. 
From the experience of the late decades, the modelling using numerical methods of approximation such 
as multiple regression algorithms has proved that the models are not enough accurate and the error 
could be significant. This research tries to replace the classical models using reliable ones, the milling 
process still remaining a challenge for researchers. The main purpose of the work is to obtain a function 
of three variables (cutting depth, feed per toot and cutting speed) using genetic algorithms. The achieve-
ment of the genetic relation is important in cutting force estimation and also in optimization of cutting 
parameters if the set of experiments are enough. The milling investigations were carried out on a CNC 
machining centre, FIRST MCV 300, with three axes. The measurements were made with a Kistler dyna-
mometer fixed on the machine tool mass. The workpiece material used for the experimental tests was a 
173 mm length, 85 mm width, and 35mm high piece of steel. The workpiece was initially tested in order to 
establish the material (spectrometric test and hardness measuring). The cutting tool used is CoroMill R 
365-080Q27-S15M with cutting tool inserts R365-1505ZNE-PM 4230 (Sandvik Coromant). The experi-
mental plan was chosen according to Taguchi’s Method and consist of 16 tests based on three variables. 
The fit between data and the model is very good, very good result being achieved after maximum 1 000 
generations. 
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1.  INTRODUCTION1 
 

The genetic algorithms (GA’s) are computerized 
models which compete with evolutionary biological 
models in order to solve optimizations or search prob-
lems [1]. They began to be recognized as optimization 
techniques with the works of J. Holland in 1975. Genetic 
algorithms have been used as efficient optimizing solu-
tions when the analytical modelling becomes complex 
and the differential equations cannot be solved. The ge-
netic algorithms rely on the concept „survival of the fit-
test‟. The initial solutions of genetic algorithms are usu-
ally randomly generated to form the generation. Genetic 
algorithms are used when traditional methods face obsta-
cles, especially when the objective function is nonlinear 
and contains real variables. They are able to recognize 
the best solution, when they find it, but they don’t know 
how they reach it. 

This paper presents a modelling technique of the cut-
ting forces resulting when milling improved AISI 1045 
using genetic algorithms. 

It is a well known fact that milling is a commonly 
process used in industry, therefore this machining proc-
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ess is thoroughly studied by researchers. The study and 
modelling of cutting forces lead to a better planning of 
the cutting process and also to an accurate estimation of 
other process parameters such as tool life, tool wear etc. 
 
2.  LITERATURE REVIEW REGARDING THE 

USE OF GENETIC PROGRAMMING IN 
MODELLING AND OPTIMIZATION OF 
CUTTING PROCESSES 

 

Nowadays a lot of researchers study modelling proc-
esses and try to optimize the milling process.  

In case of genetic modelling of cutting forces, impor-
tant approaches are presented in the papers of Milferner 
[2, 3, and 4]. In their paper Milferner et al. [2] present the 
development of a cutting force model using genetic equa-
tions in the case of ball-end milling process. They use the 
forces measured from experiments and the genetic pro-
gramming. In [3], the authors present an acquisition and 
simulation system for measuring and simulation of the 
cutting forces when milling with a ball-end cutter. The 
simulation system is based on genetic algorithms and on 
the analytical formulation of the components of cutting 
forces for the ball-end milling cutter. In the end, the au-
thors present a validation model and compare the simu-
lated cutting forces with the measured ones and conclude 
that there is a similarity between them. In [5], Gallova 
uses the artificial intelligence tools such as expert sys-
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tems, genetic algorithms and the principles of the fuzzy 
systems theory in order to optimize the process parame-
ters and to estimate the cutting forces when milling with 
a ball-end cutter. Conceição et al. [6] optimized the 
multi-pass cutting parameter in face milling using genetic 
search. Saffari et al. [7] used genetic algorithms to opti-
mize the machining parameters to minimize tool deflec-
tion in the end milling operation. Patwari et al. [8] de-
scribe mathematically the effect of cutting parameters on 
surface roughness in end milling of medium carbon steel. 
The mathematical model for the surface roughness has 
been developed and solved in terms of cutting speed, 
feed rate, and axial depth of cut. Wang et al. [9] used 
genetic simulated annealing for determining optimal ma-
chining parameters in case of multi-pass milling.       
Onwubolu [10] proposed a new optimization technique 
based on Tribes for determination of the cutting parame-
ters in multi-pass milling operations such as plain milling 
and face milling. Chengqiang et al. [11] propose the 
combination of orthogonal experimental method and the 
genetic algorithm method when optimizing milling pa-
rameters, in order to improve tool life. Azlan Mohd Zain 
et al. [12] present in their paper the capability of genetic 
algorithm (GA) technique to obtain the optimal machin-
ing parameters when milling with an uncoated carbide 
(WC-Co) tool in order to minimize the surface roughness 
value. In [13] E. Rivière-Lorphèvre et al. set out different 
methods to retrieve cutting parameters for several cutting 
force models, using the least square fitting method and 
the genetic algorithms. The GA’s are tested on nonlinear 
cutting forces models. The optimization methods are 
validated using both simulated and measured cutting 
forces. 
 
3.  EXPERIMENTAL CUTTING FORCE 

MEASURING 
 

The milling investigations were carried out on a CNC 
machining centre, FIRST MCV 300, with three axes. The 
measurements were made with a Kistler dynamometer 
fixed on the machine tool table. The workpiece is 
mounted on the dynamometer. The signals received by 
the dynamometer are transmitted through the amplifier, 
Multichanel Type 5070, on the acquisition board (PCIM-
DAS1602/16) installed on the PC. The program used for 
data acquisition is DynoWare Type 2 825. 

The workpiece material used for the experimental 
tests was a 173 mm length, 85 mm width, and 35mm 
high piece of steel. The workpiece was initially tested in 
order to establish the material out of which it is made. 
There were performed two types of tests, namely: a spec-
trometry test for establishing the chemical composition, 
and a test of hardness measuring. Spectrometry test was 
performed using a spark optical emission spectrometer; 
called SPECTROMAXx.The test for hardness measure-
ment was performed using a Shimadzu HSV30 device. 
After conducting the tests it has been established that the 
workpiece material is improved AISI 1045 having the 
chemical composition and hardness given in Table 1. 

The used cutting tool, CoroMill R 365-080Q27-
S15M, and cutting tool insert, R365-1505ZNE-PM 4230, 
were manufactured by Sandvik Coromant and have the 
chracteristics given in Fig. 2 and Tables 2 and 3. 

Table 1 
Chemical composition and hardness  

of the improved AISI 1045 
 

Mate-
rial 

Chemical composition Hard-
ness 

Im-
prove
d AISI 
1045 

98.2% Fe  
0.59% Mn, 0.513 % C, 0.387% Si, 
0.128% Cu, 0.107% Cr, 
0.099% Ni, 0.047% Se, >0.019% N, 
0.013% S, 0.011% Co 
0.0091% P, 0.0072% As, <0.0070% 
Ta, 0.0059% Mo, 0.0057% Pb, 
0.0055% Sn, 0.0054% Sb, 0.0049% 
Zn,  0.0046% Al, 0.0020%  Ca, 
<0.0020% Ce, <0.0015%Bi, <0.0015% 
Zr, 0.0013%Nb, <0.0010% V, 
<0.007% W 
0.0007% Ti, 0.0007% La, <0.0002% B 

461 
HV- 

Vickers 
meas-
ured 
hard-
ness 

 

 
a         b 

Fig. 2. CAD drawing: a. cutting tool, b. cutting tool insert [14]. 
 

Table 2 
Cutting tool technical data [14] 

 

Parameter Value 

Weight 1.3 
Dc 80 
Dc2 86.7 
D5m 64 
dmm 27 
l1 50 

ap_max 6 
Max_rpm 11500 

κr 65 
 

Table 3 
Cutting tool inserts technical data [14] 

 

Parameter Value 
Weight 0.014 

Size 15 
ap_max 6 

iC 15 
la 6.4 
s 5.66 
bs 1.5 
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The experimental plan was chosen according to Ta-
guchi’s Method. Taguchi’s Method in industrial practice 
is a method that seeks to help researchers to obtain faster 
and cheaper the best results by performing the experi-
ments. This method is based on the orthogonal factorial 
plan, see Fig. 3. The method consists in defining the 

process objective, or more precisely defining a target 
value which measures the process performance; deter-
mining the design parameters which affect the process, 
and establishing the levels of variation of these parame-
ters. 

 

 
 

Fig. 3. Orthogonal matrix [15]. 
 

Table 4 
Experimental plan (Taguchi Method) 

 

Exp. 
No. 

Parameter 1 Parameter 2 Parameter 3 

1 1 1 1 
2 1 2 2 
3 1 3 3 
4 1 4 4 
5 2 1 2 
6 2 2 1 
7 2 3 4 
8 2 4 3 
9 3 1 3 
10 3 2 4 
11 3 3 1 
12 3 4 2 
13 4 1 4 
14 4 2 3 
15 4 3 2 
16 4 4 1 

 
Table 5 

Experimental plan, average and maximum measured cutting forces [N] 
 

Test ap fz vc 
Average measured cutting forces [N] Max. measured cutting forces [N] 

Fx Fy Fz Fx Fy Fz 

1 0.5 0.08 150 −17.4991 −21.8793 107.604 89.6301 83.9539 125.061 

2 0.5 0.092 165 −26.5493 −72.7621 64.06962 107.208 140.259 88.1195 

3 0.5 0.105 181.5 −32.1633 −57.7599 83.2857 120.438 138.428 109.497 

4 0.5 0.121 199.6 −38.6642 −84.2418 78.94135 138.748 166.901 99.9756 

5 0.63 0.08 165 −33.92627 −70.5911 78.74032 124.146 159.073 102.539 

6 0.63 0.092 150 −37.5438 −89.3923 74.46291 144.699 182.327 108.078 

7 0.63 0.105 199.6 −13.64 −93.4657 97.43377 194.55 199.036 116.547 

8 0.63 0.121 181.5 −33.2112 −89.5799 83.90361 194.183 219.589 124.741 

9 0.78 0.08 181.5 −45.5093 −80.3299 120.2731 170.151 187.134 144.47 

10 0.78 0.092 199.6 −54.3224 −108.322 86.64886 195.282 220.505 123.688 

11 0.78 0.105 150 −52.7918 −116.676 103.8513 199,036 240.509 130.892 

12 0.78 0.121 165 −73.9527 −129.45 117.5149 234.65 279.465 149.918 

13 0.97 0.08 199.6 −60.7862 −117.021 122.0013 216.751 254.929 144.241 

14 0.97 0.092 181.5 −108.773 −226.366 153.2461 379.623 456.116 197.205 

15 0.97 0.105 165 −88.9186 −165.489 115.5525 282.852 333.298 162.094 

16 0.97 0.121 150 −72.4686 −121.55 85.3426 208.220 245.587 133.295 
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After setting the parameters and their levels the suit-
able array of experiences from the orthogonal matrix can 
be also chosen, Fig. 3. In our case the experimental ma-
trix has three parameters, each parameter having 4 val-
ues, resulting 16 tests, as shown in Table 4. 

The cutting parameters and average and maximum 
measured cutting forces are presented in Table 5. 

 
4. GENETIC ALGORITHMS 
 

The GA’s include a set of individual elements repre-
sented in the form of binary strings, the so called popula-
tion, and a set of biological operators defined on the 
population. With the help of the operators, the GA’s can 
manipulate the most promising strings in order to seek 
the best solutions (Fig. 4). The goal that needs to be ac-
complished is characterized by a fitness function. In ge-
netic programming, the chromosomes are functions rep-
resented by trees in reverse Polish notation. The main 
steps followed are similar to evolutionary algorithms: 
selection, crossover, mutation, see Figs. 5 and 6 etc. 

As mentioned before, the main elements that allow 
the analogy between the search problems and natural 
evolution are: 
• chromosomes, an ordered set of elements called 

genes. The values of genes determine the characteris-
tics of an individual; 

• the fitness function: every individual of a population 
is more or less adapted to that environment. The fit-
ness function is a measure of adaptation to the envi-
ronment. The purpose of evolution is that all indi-
viduals can reach a fitness environment; 

• generation is a stage in the evolution of a population. 
If we consider the development as an iterative proc-
ess in which a population changes into other popula-
tions, then the generation is an iteration of that proc-
ess. 

 
Fig. 4. A simple program in GP. 

 

 
Fig. 5. The Crossover operator in GP. 

 
 

 
 

Fig. 6. Mutation in GP. 

 
• crossover allows information combining from two or 

more parents in order to generate one or more off-
spring; 

• mutation is the process of genes alternation in order 
to ensure population diversity; 

• population: is built up of individuals living in an en-
vironment in which they must adapt; 

• reproduction: the process of passing from one genera-
tion to another. The individuals of the new generation 
inherit characteristics from their parents, but can ac-
quire also new ones as a result of mutation processes, 
which have a random character; 

• selection: the process of natural selection and has as a 
result the survival of the individuals with higher fit-
ness. 
When using a genetic algorithm it is required to es-

tablish in advance: 
• the stopping criterion; 
• size and the initializing method of the population 

(population size can be fixed or variable); 
• fitness function (the user builds up the function that 

expresses the degree of adequacy to the environment 
starting from the objective function and including the 
problem constraints); 

• mechanism of crossover so the parents can generate 
one or more offspring; 

• mechanism of mutation that provides the elements 
disturbance; 

• mechanism for selecting parents and survivors; 
• encoding mode (specify how each configuration of 

the search space is associated with a chromosome). 
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5. GENETIC MODELLING AND RESULTS 
 

The genetic programming (GP) is an evolutionary 
method applied to a population of programs in order to 
achieve a predefined objective usually characterized by a 
fitness function [1]. The most common usage of fitness 
function is minimization of the objective function given 
by a fitness function. If the objective is maximization of 
the function ffitness, simply we can consider the minimiza-
tion of the function gfitness  = −ffitness as goal of the GP 
method.  

In GP, the chromosomes are functions represented by 
trees in inverse Polish notation. The main steps in GP 
algorithms are similar to evolutionary algorithms: selec-
tion, crossover and mutations. We must remark that all 
these genetic operators act on trees and sub-trees, differ-
ent from other evolutionary algorithm where chromo-
somes are represented by linear sequence of genes. 

The main steps in GP are described in what is follow-
ing [17]. A first population of individuals is created using 
a random generator (usually uniform distribution). Each 
individual from population is evaluated according to fit-
ness function. Using the fitness function, the selection 
operator selects the pairs of individuals (according to 
selection mechanism: roulette, tournament, stochastic 
sampling, etc.) in order to apply the crossover operator to 
create new individuals. The less performing individuals 
are discarded and the best individuals are grouped in a 
new generation. Mutations are performed in order to pre-
vent the premature convergence and elitism disadvan-
tages. The population is evaluated again and the loop 
continues until stop conditions are fulfilled. The stop 
condition can be a predefined number of iterations or a 
number of steps (three or four generation) that cannot 
produce an improvement of fitness for the best individual 
from population. 

There are few software tools that are used for GP: 
GPLAB, GPdotNET, GPTIPS, GP-OLS and also special-
ized software tools (PolyLX, texture analysis for petrol). 
An interesting extension of GP is the combination of 
more genes represented by trees in a linear fashion and 
optimization of individuals in two stages: optimization of 
each gene and optimization of the linear combination 
(linear regression) [2]. The optimal weights in linear 
model are obtained by ordinary least squares to regress 
the genes versus the output data [2]. In our application, 
we used the software GPTIPS [2, 17]. Practically, the 
nonlinear model is modelled by a pseudo-linear model 
with nonlinear genes. 

In our application we are looking for a function of 
type:  
 

 Fx,y,z, steel = g(ap, fz, vc) = ∑
=

⋅
gN

k
czpkk vfagb

1

),,( . (1) 

 
In order to compute gk and bk, k = 1…n (n is the 

maximum number of genes) we use a set of terminals 
and operators [1]: 

 
 T = {ap, fz, vc, RA}, (2) 

 
 F = {+, ∗−, , /, exp}. (3) 

 
In terminal set, RA is a random value in the range 

[−10.0, +10.0].  
 

6.  EXPERIMENTAL RESULTS: 
 

We used a population with 200 individuals, 1 000 
generation, maximum number of genes 6 and maximum 
depth of the tree set to 9. These optimal values are set 
experimentally in order to find an acceptable error for 
model for a shortest formula (1) for this overall model. 

Even the formulas are enough complicated, the re-
sults are very good. The measure error for fitness func-
tion is chosen to be RMS error (Root Mean Square er-
ror), measure of the differences between values predicted 
by a model and the observed values: 

 

 n

yy
RMS

n

i
ii

e

∑
=

−
= 1

2)ˆ(

, (4) 

 
where iŷ is the estimated value, yi is the observed value 

and n the number of samples.  
The convergence of the GP is fast enough and a very 

good result is achieved after maximum 1 000 generations 
(Fig. 7). 

The fit between data and model is given in the next 
pairs RMSe and the corresponding formula. In the formu-
las, y is corresponding to Fx, Fy and Fz variables mean-
while (x1, x2, x3) are the corresponding variables to ap, fz, 
and vc. We will have six pairs of figures, corresponding 
to average and maximum values (Figs. 8, 10, 12, 14, 16, 
and 18) accompanied by the corresponding function 
forms obtained by GP (Figs. 9, 11, 13, 15, 17, 19). 

 

 

 
 

Fig. 7. Convergence of the algorithm [2] for Fz, the case of maximum values. 



136 D. Arotări ței, C. Constantin and G. Constantin / Proceedings in Manufacturing Systems, Vol. 7, Iss. 3, 2012 / 131−138 

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Steel, average values, RMSe, Fx. 

 

 
Fig. 9. Steel, average values, formula for Fx variable. 

 

 
 

Fig. 10. Steel, average values, RMSe, Fy. 
 

 
Fig. 11. Steel, average values, formula for Fy variable. 

 

 
 

Fig. 12. Steel, average values, RMSe, Fz. 
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Fig. 13. Steel, average values, formula for Fz variable. 

 

 
Fig. 14. Steel, maximum values, RMSe, Fx. 

 

 
Fig. 15. Steel, maximum values, formula for Fx variable. 

 

 
 

Fig. 16. Steel, maximum values, RMSe, Fy. 
 

 
Fig. 17. Steel, maximum values, formula for Fy variable. 

 

 
 

Fig. 18. Steel, maximum values, RMSe, Fz. 
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Fig. 19. Steel, maximum values, formula for Fz variable. 

 
Very few papers deal with GP applied discovering of 

formulas that describe the cutting force during a milling 
process. In fact, only one paper is known [2] by the best 
knowledge of the authors. If we use a single gene, the 
convergence of population is considerable slow; the 
number of populations is considerable increased in order 
to achieve a good performance. Even in this case, the 
performance is not as good as in the case of multiple 
gene regression but the formula is simple in comparison 
with multiple gene regression. The saturation is present 
around the 5 000 generation and the fitness value doesn’t 
decrease even at 15 000 generation. 
 
7.  CONCLUSIONS 
 

In this paper, the authors accomplished a thorough re-
search on the use of genetic algorithms in modelling the 
cutting forces resulting in the milling process. The analy-
sis of this research revealed the following: 
• it demonstrated that the use of genetic algorithms is 

modern and suitable for modelling the cutting forces 
obtaining suitable results similar to real ones; 

• modelling results using genetic algorithms and artifi-
cial neural networks indicate that output representing 
the cutting forces can be predicted with a very small 
error of the order of 10-4; 

• genetic algorithms have a very good learning power, 
their accuracy increasing with the number of learning 
data sets; 

• by modelling with genetic algorithms it has been ob-
served that if a single gene is used, then the popula-
tion convergence is considerably slower; 

• to achieve a better performance of the genetic algo-
rithm it is necessary to increase considerably the 
number of populations. Even in this case, one could 
not get as good performance as in the use of multiple 
regression. The only advantage would be that they 
would get a simpler formula. Saturation occurs at 
around 5 000 generations but does not diminish the 
value or suitability to the generation number 15 000. 

• even this method of modelling is mostly used in op-
timization of cutting process, it proved to be a flexi-
ble approach and through introduction of modeling 
with genetic algorithms in studying the cutting forces 
very closed to reality models were obtained that bring 
original contribution to the dataset and the material 
used. 

 
REFERENCES 
 

[1]  Genetic Algorithms, http://www.obitko.com/ 
tutorials/genetic-algorithms/ Obitko.com 

[2]  M. Milfelner, J. Kopac, F. Cusa, U. Zuper, Journal of Ma-
terials Processing Technology 164–165 (2005), pp. 1554–
1560. 

[3]  F. Cus, M. Milfelner, J. Balic, System for cutting force 
monitoring and simulation in milling, 12th International 
Conference Achievements in Mechanical& Materials En-
gineering, pp. 175−178, 2000, Poland. 

[4]  M. Milfelner, F. Cus, J. Kopac, Machining and optimiza-
tion of 3D sculptured surfaces in ballend milling based on 
combined artificial intelligence, articol disponibil la 
http://fs-server.uni-
mb.si/si/inst/ips/labod/DATOTEKE/011123401.p

df, accessed: 14.01.2012. 
[5]  S. Gallova, Genetic Algorithm as a Tool of Fuzzy Parame-

ters and Cutting Forces Optimization, Proceedings of the 
World Congress on Engineering, vol. IWCE, 2009, Lon-
don, U.K.  

[6]  A.C.A Conceição, C.F. Castro, and J.P. Davim, “Optimi-
sation of multi-pass cutting parameters in face-milling 
based on genetic search” Int J Adv Manuf Technol, vol.44, 
pp. 1106–1115, 2009. 

[7]  R.J. Saffari, M.R. Razfar, A.H. Salimi, and M.M. Khani, 
“Optimization of Machining Parameters to Minimize Tool 
Deflection in the End Milling Operation Using Genetic 
Algorithm” World Applied Sciences Journal ,vol.6 (1), pp. 
64−69, 2009. 

[8]  M.A.U. Patwari , A.K.M. Nurul-Amin , M.D. Arif, “Opti-
mization of Surface Roughness in End Milling of Medium 
Carbon Steel by Coupled Statistical Approach with Ge-
netic Algorithm,” Special Issue of the International Jour-
nal of the Computer, the Internet and Management, Vol. 
19 No. SP1, June, 2011. 

[9]  Z. G. Wang, Y. S. Wong, and M. Rahman, “Optimization 
of multi-pass milling using genetic algorithm and genetic 
simulated annealing” Int J Adv Manuf Technol, vol. 24, 
2004, pp. 727−732,. 

[10] G.C. Onwubolu, “Performance-based optimization of mul-
tipass face milling operations using Tribes” International 
Journal of Machine Tools & Manufacture, vol.46, pp. 
717–727, 2006. 

[11] Z. Chengqiang, and C. Jie, “Methods of Optimization of 
Milling Parameters Based on Genetic Algorithm” The 
Ninth International Conference on Electronic Measure-
ment & Instruments, vol. 1, 2009, pp. 382−385,. 

[12] Azlan Mohd Zain, Habibollah Haron, Safian Sharif, „Ge-
netic Algorithm for Optimizing Cutting Conditions of Un-
coated Carbide (WC-Co) in Milling Machining Opera-
tion”, 2009 Conference on Innovative Technologies in In-
telligent Systems and Industrial Applications (CITISIA 
2009) Monash University, Sunway campus, Malaysia, 
25th & 26th July 2009, pp. 214−218. 

[13] E. Rivière-Lorphèvre, J. de Arizon, E. Filippi, P. Dehom-
breux, Cutting forces parameters evaluation in milling us-
ing genetic algorithm, 
http://www.geniemeca.fpms.ac.be/recherche/Ar
ticles/riviere2007c.pdf 

[14] www.sandvik.coromant.com. 
[15] www.Wikipedia.org. 
[16] J.R. Koza, Genetic Programming, The MIT Press, Massa-

chusetts, 1992. 
[17] https://sites.google.com/site/gptips4matlab/. 

 


