Proceedings in
MANUFACTURING
SYSTEMS

Proceedings in Manufacturing Systems, Volume Tidsy 2012

ISSN 2067-9238

ASPECTSREGARDING THE USE OF GENETIC PROGRAMMING
IN MODELLING THE CUTTING PROCESS

Dragos AROTARITEI, Corina CONSTANTIN?®", George CONSTANTIN?

Y pPhD, Prof,Medical Bioengineering Facultyniversity of Medicine and Pharmacy "Gr. T. Popiasi, "Romania
9 PhD Student, Machine and Production Systems Depattdniversity “Politehnica“ of Bucharest, Romania
“PhD, Prof, Machine and Production Systems Depattrhbmiversity “Politehnica® of Bucharest, Romania

Abstract: The paper deals with the milling force modellingicerning average and maximum forces.
From the experience of the late decades, the mndallsing numerical methods of approximation such
as multiple regression algorithms has proved thet tmhodels are not enough accurate and the error
could be significant. This research tries to re@abe classical models using reliable ones, thdingil
process still remaining a challenge for researchdiise main purpose of the work is to obtain a fiomct

of three variables (cutting depth, feed per toad @ntting speed) using genetic algorithms. The e
ment of the genetic relation is important in cutiforce estimation and also in optimization of gt
parameters if the set of experiments are enough.riifling investigations were carried out on a CNC
machining centre, FIRST MCV 300, with three axé® Measurements were made with a Kistler dyna-
mometer fixed on the machine tool mass. The war&pieaterial used for the experimental tests was a
173 mm length, 85 mm width, and 35mm high piesteef. The workpiece was initially tested in ortter
establish the material (spectrometric test and mast measuring). The cutting tool used is CoroHRill
365-080Q27-S15M with cutting tool inserts R365-1895-PM 4230 (Sandvik Coromant). The experi-
mental plan was chosen according to Taguchi's Methiod consist of 16 tests based on three variables.
The fit between data and the model is very good, geod result being achieved after maximum 1 000
generations.

Key words: milling, milling cutter, cutting parameters, expaental plan, cutting forces components, av-

erage cutting force, maximum cutting force, genatgiorithms, genetic model

1. INTRODUCTION

The genetic algorithms (GA’s) are computerized
models which compete with evolutionary biological
models in order to solve optimizations or searchbpr
lems [1]. They began to be recognized as optinonati
techniques with the works of J. Holland in 1975n&e&
algorithms have been used as efficient optimizioly-s

tions when the analytical modelling becomes complex

and the differential equations cannot be solvec: G&-

netic algorithms rely on the concept ,survival bé tfit-

test'. The initial solutions of genetic algorithms asuu
ally randomly generated to form the generation. €ien
algorithms are used when traditional methods fdrstas
cles, especially when the objective function is |mmar

and contains real variables. They are able to mEzeg
the best solution, when they find it, but they ddaiow

how they reach it.

This paper presents a modelling technique of thie cu
ting forces resulting when milling improved AISI 4%
using genetic algorithms.

It is a well known fact that milling is a commonly
process used in industry, therefore this machimirag-
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ess is thoroughly studied by researchers. The shndy
modelling of cutting forces lead to a better plaugnof

the cutting process and also to an accurate estimat

other process parameters such as tool life, toal wt.

2. LITERATURE REVIEW REGARDING THE
USE OF GENETIC PROGRAMMING IN
MODELLING AND OPTIMIZATION OF
CUTTING PROCESSES

Nowadays a lot of researchers study modelling proc-
esses and try to optimize the milling process.

In case of genetic modelling of cutting forces, anp
tant approaches are presented in the papers ofrivif
[2, 3, and 4]. In their paper Milferner et al. [2esent the
development of a cutting force model using genedjica-
tions in the case of ball-end milling process. Theg the
forces measured from experiments and the genetic pr
gramming. In [3], the authors present an acquisiad
simulation system for measuring and simulation haf t
cutting forces when milling with a ball-end cuttate
simulation system is based on genetic algorithntsam
the analytical formulation of the components oftiogt
forces for the ball-end milling cutter. In the ertide au-
thors present a validation model and compare timei-Si
lated cutting forces with the measured ones andlada
that there is a similarity between them. In [5],llG&a
uses the artificial intelligence tools such as exggs-
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tems, genetic algorithms and the principles of ftiezy
systems theory in order to optimize the procesarmpar
ters and to estimate the cutting forces when ngillivith
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a ball-end cutter. Conceicdo et al. [6] optimizda t
multi-pass cutting parameter in face milling usgenetic

search. Saffari et al. [7] used genetic algorithmepti-
mize the machining parameters to minimize tool etefl
tion in the end milling operation. Patwari et &] fde-
scribe mathematically the effect of cutting parssrebn
surface roughness in end milling of medium carbieels
The mathematical model for the surface roughness ha
been developed and solved in terms of cutting speed
feed rate, and axial depth of cut. Wang et al. $éd
genetic simulated annealing for determining optimak
chining parameters in case of multi-pass milling.
Onwubolu [10] proposed a new optimization technique

Table 1
Chemical composition and har dness
of theimproved AlSI 1045
M ate- Chemical composition Hard-
rial ness
98.2% Fe
0.59% Mn, 0.513 % C, 0.387% Si,
0.128% Cu, 0.107% Cr,
0.099% Ni, 0.047% Se, >0.019% N, 461
(m- 0.013% S, 0.011% Co HV-
prove 0.0091% P, 0.0072% As, <0.007000Vickers
dAIS Ta, 0.0059% Mo, 0.0057% Pb, meas-
1045 0.0055% Sn, 0.0054% Sb, 0.0049% ured
Zn, 0.0046% Al, 0.0020% Ca, hard-
<0.0020% Ce, <0.0015%Bi, <0.0015P6 ness
Zr, 0.0013%Nb, <0.0010% V,
<0.007% W

0.0007% Ti, 0.0007% La, <0.0002%

B

based on Tribes for determination of the cuttincapee-
ters in multi-pass milling operations such as pfaitling
and face milling. Chenggiang et al. [11] propose th
combination of orthogonal experimental method érel t
genetic algorithm method when optimizing milling-pa
rameters, in order to improve tool life. Azlan MoBdin

et al. [12] present in their paper the capabilitygenetic
algorithm (GA) technique to obtain the optimal maeh
ing parameters when milling with an uncoated carbid
(WC-Co) tool in order to minimize the surface ronghs
value. In [13] E. Riviére-Lorphévre et al. set different
methods to retrieve cutting parameters for sevarding
force models, using the least square fitting metaod
the genetic algorithms. The GA’s are tested onineat
cutting forces models. The optimization methods are

validated using both simulated and measured cutting [%

forces.

3. EXPERIMENTAL CUTTING FORCE
MEASURING

The milling investigations were carried out on a@N

i

D5m

—| dmp,

l-—

machining centre, FIRST MCV 300, with three axése T Fig. 2. CAD drawing:a. cutting tool,b. cutting tool insert [14].

measurements were made with a Kistler dynamometer
fixed on the machine tool table. The workpiece is
mounted on the dynamometer. The signals received by
the dynamometer are transmitted through the araplifi
Multichanel Type 5070, on the acquisition board I(RC
DAS1602/16) installed on the PC. The program used f
data acquisition is DynoWare Type 2 825.

The workpiece material used for the experimental
tests was a 173 mm length, 85 mm width, and 35mm
high piece of steel. The workpiece was initiallgtésl in
order to establish the material out of which itmisade.
There were performed two types of tests, namebpez-
trometry test for establishing the chemical comjpms;
and a test of hardness measuring. Spectrometryveest
performed using a spark optical emission spectremet
called SPECTROMAXx.The test for hardness measure-
ment was performed using a Shimadzu HSV30 device.
After conducting the tests it has been establishatithe
workpiece material is improved AISI 1045 having the
chemical composition and hardness given in Table 1.

The used cutting tool, CoroMill R 365-080Q27-
S15M, and cutting tool insert, R365-1505ZNE-PM 4230
were manufactured by Sandvik Coromant and have the
chracteristics given in Fig. 2 and Tables 2 and 3.

Table 2
Cutting tool technical data[14]
Par ameter Value
Weight 1.3
D, 80
De 86.7
Dsp 64
Avm 27
I, 50
aD max 6
Max_rpm 11500
Ky 65
Table 3
Cutting tool insertstechnical data[14]
Par ameter Value
Weight 0.014
Size 15
8 max 6
ic 15
l5 6.4
S 5.66
b, 1.5
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The experimental plan was chosen according to Taprocess objective, or more precisely defining adtr
value which measures the process performance;-deter
mining the design parameters which affect the m®ce
and cheaper the best results by performing therexpe and establishing the levels of variation of theaeame-

guchi’s Method. Taguchi’'s Method in industrial piiae
is a method that seeks to help researchers tonofatstier

ments. This method is based on the orthogonal fiatto ters.
plan, see Fig. 3. The method consists in definimg t

Number of Parameters (P)

Pl 34567 [ 8 [ o[ M[z (3 ][ 6[m @[890 [2]2]M[%]6|7[®B][B]W[A
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5
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8laf e | oo | v | re | Loz | v | a2 [ L | L
E
2ol 125 | 125 | 125 | o5 | 25 | uo0 | uso | s | o [ w50 | L0

Fig. 3. Orthogonal matrix [15].
Table 4
Experimental plan (Taguchi Method)

Exp. Parameter 1 Parameter 2 Parameter 3

No.

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 2 1 2

6 2 2 1

7 2 3 4

8 2 4 3

9 3 1 3

10 3 2 4

11 3 3 1

12 3 4 2

13 4 1 4

14 4 2 3

15 4 3 2

16 4 4 1

Table 5
Experimental plan, aver age and maximum measured cutting forces [N]
Average measured cutting forces[N] | Max. measured cutting forces[N]
Test | a, f, Ve
Fy Fy F, Fy Fy F,

1 0.5 | 0.08 150 | -17.4991 | -21.8793 | 107.604 89.6301 83.9534 125.061
2 0.5 | 0.092| 165| -26.5493 | -72.7621 | 64.06962 107.208 140.259 88.1195
3 0.5 | 0.105| 181.5 -32.1633 | -57.7599 | 83.2857 120.438 138.429 109.497
4 0.5 | 0.121| 199.6 -38.6642 | —84.2418 | 78.94135 138.748 166.901 99.9756
5 |0.63| 0.08 165| —33.92627 | -70.5911 | 78.74032 124.146 159.073 102.539
6 | 0.63| 0.092| 150| -37.5438 | -89.3923 | 74.46291 144.699 182.327 108.078
7 | 0.63| 0.105 199.6 -13.64 -93.4657 | 97.43377 194.55 199.036 116.547
8 | 0.63| 0.121| 1813 -33.2112 | -89.5799 | 83.90361 194.183 219.589 124.741
9 |0.78| 0.08| 1815 -45.5093 | -80.3299 | 120.2731 170.151 187.134 144.4Y
10 | 0.78| 0.092| 199.6 -54.3224 | -108.322 | 86.64886 195.282 220.50% 123.688
11 | 0.78| 0.105] 150| -52.7918 | -116.676 | 103.8513 199,036 240.509 130.892
12 | 0.78| 0.121] 165| -73.9527 | -129.45 | 117.5149 234.65 279.464 149.918
13 | 0.97| 0.08| 199.4 -60.7862 | -117.021 | 122.0013| 216.751 254.929 144.241
14 | 0.97| 0.092| 1818 -108.773 | -226.366 | 153.2461 | 379.623 456.1146 197.205
15 | 0.97| 0.105] 165| -88.9186 | -165.489 | 115.5525| 282.852 333.29¢ 162.094
16 | 0.97| 0.121] 150| -72.4686 | -121.55 | 85.3426 208.220 245,587 133.295
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After setting the parameters and their levels thie s
able array of experiences from the orthogonal matan
be also chosen, Fig. 3. In our case the experirherda
trix has three parameters, each parameter havivag-4
ues, resulting 16 tests, as shown in Table 4.

The cutting parameters and average and maximum
measured cutting forces are presented in Table 5.

4. GENETIC ALGORITHMS

The GA'’s include a set of individual elements repre
sented in the form of binary strings, the so caflegula-
tion, and a set of biological operators defined the
population. With the help of the operators, the &8an
manipulate the most promising strings in order ¢eks
the best solutions (Fig. 4). The goal that needset@c-
complished is characterized by a fitness functiange-
netic programming, the chromosomes are functiops re
resented by trees in reverse Polish notation. Thaam
steps followed are similar to evolutionary algomith
selection, crossover, mutation, see Figs. 5 artd.6 e

As mentioned before, the main elements that allow
the analogy between the search problems and natural
evolution are:

e chromosomes, an ordered set of elements called
genes. The values of genes determine the chamacteri
tics of an individual;

« the fitness function: every individual of a popidat
is more or less adapted to that environment. Tie fi
ness function is a measure of adaptation to thé env
ronment. The purpose of evolution is that all indi-
viduals can reach a fitness environment;

e generation is a stage in the evolution of a pomiat *
If we consider the development as an iterative fproc

ess in which a population changes into other pepula
tions, then the generation is an iteration of thraic- .
ess.
Vi .
LA
PP
- N .
P | .
O ()
7N /o

(3+ %5 )(1%;) °
Fig. 4. A simple program in GP.

CROSSOVER e

\(ﬁ :

A .

Fig. 5. The Crossover operator in GP.
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MUTATION

parent

offc

(3+ x5 )(1x))

offspring

ofc

(3+ X5 ) (Xl +X%7)

Fig. 6. Mutation in GP.

crossover allows information combining from two or

more parents in order to generate one or more off-

spring;
mutation is the process of genes alternation ireord
to ensure population diversity;

population: is built up of individuals living in a@n-
vironment in which they must adapt;
reproduction: the process of passing from one gener
tion to another. The individuals of the new genierat
inherit characteristics from their parents, but ean
quire also new ones as a result of mutation presess
which have a random character;

selection: the process of natural selection andabhas
result the survival of the individuals with highfitr
ness.

When using a genetic algorithm it is required to es

tablish in advance:

the stopping criterion;
size and the initializing method of the population
(population size can be fixed or variable);

fitness function (the user builds up the functibatt

expresses the degree of adequacy to the environment

starting from the objective function and includiting
problem constraints);

mechanism of crossover so the parents can generate

one or more offspring;

mechanism of mutation that provides the elements

disturbance;
mechanism for selecting parents and survivors;

encoding mode (specify how each configuration of

the search space is associated with a chromosome).
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5. GENETIC MODELLING AND RESULTS In our application we are looking for a function of

. . . . t :
The genetic programming (GP) is an evolutionary ype

method applied to a population of programs in order Ny

a_lchieve a pr_edefined objective usually charactdrtzp_a Fyy.z, stee 9(@p, Tz Ve) = Zbk M.(a, f,.v.). (@
fithess function [1]. The most common usage ofefis k=1

function is minimization of the objective functigiven

by a fitness function. If the objective is maxintia of In order to computey and by, k = 1..n (n is the

the functionfimess SIMply we can consider the minimiza- maximum number of genes) we use a set of terminals
tion of the functiongsmess = —frimess @S goal of the GP and operators [1]:

method.

In GP, the chromosomes are functions represented by T={ay f, %, RA, (2)
trees in inverse Polish notation. The main stepS&kh
algorithms are similar to evolutionary algorithnsglec- F={+-, *, 1/ exp} (3)
tion, crossover and mutations. We must remark aflat
these genetic operators act on trees and sub-ttifes; In terminal set, RA is a random value in the range

ent from other evolutionary algorithm where chromo- [-10.0, +10.0].
somes are represented by linear sequence of genes.
The main steps in GP are described in what isWello 6. EXPERIMENTAL RESULTS:
ing [17]. A first population of individuals is cresl using _ ! o
a random generator (usually uniform distributioBjch We used a population with 200 individuals, 1 000
individual from population is evaluated accordingfii- ~ 9€neration, maximum number of genes 6 and maximum

ness function. Using the fitness function, the cida  dePth of the tree set to 9. These optimal valuessat
operator selects the pairs of individuals (accaydia ~ ©XPerimentally in order to find an acceptable erfar
selection mechanism: roulette, tournament, stoichast Model for a shortest formula (1) for this overaddel.
sampling, etc.) in order to apply the crossoveraige to Even the formulas are enough compllcaped, the re-
create new individuals. The less performing indieis ~ SUltS are very good. The measure error for fitriags-

are discarded and the best individuals are grouped 10N iS chosen to be RMS errdRgot Mean Square er-
new generation. Mutations are performed in orderés ror), measure of the differences between values pestlic
vent the premature convergence and elitism disadvanPy @ model and the observed values:

tages. The population is evaluated again and tbe lo
continues until stop conditions are fulfilled. Tiséop
condition can be a predefined number of iterations
number of steps (three or four generation) thamnoan
produce an improvement of fitness for the bestviddial
frorp”f);péulz:\rtéo?éw software tools that are used for GP:vvhere ¥, is the estimated valug, is the observed value
GPLAB, GPdotNET, GPTIPS, GP-OLS and also special-2ndn the number of samples.

ized software tools (PolyLX, texture analysis fetml). The convergence of the GP is fast enough and a very
An interesting extension of GP is the combinatidn o good result is achieved after maximum 1 000 geierst
more genes represented by trees in a linear fasrnidn (Fig. 7). . o .
optimization of individuals in two stages: optirtizm of ‘The fit between data and model is given in the next
each gene and optimization of the linear combimatio P&irs RMS and the corresponding formula. In the formu-
(linear regression) [2]. The optimal weights ineim  12S:Y is corresponding i, Fy andF, variables mean-
model are obtained by ordinary least squares teessg WNile (i, X2, Xs) are the corresponding variablesafpf,,
the genes versus the output data [2]. In our amiidio, andv.. We will have six pairs of figures, corresponding

we used the software GPTIPS [2, 17]. Practicalg t O @verage and maximum values (Figs. 8, 10, 12164,
nonlinear model is modelled by a pseudo-linear rhode@nd 18) accompanied by the corresponding function
with nonlinear genes. forms obtained by GP (Figs. 9, 11, 13, 15, 17, 19).

RMS = , )

Best ftness: 1.5114 found at generation 553
T T T T T T T T T
—+— Best fiiness

g

a3
1

Log Fitness

0 1 1 1 I 1 1 1 1 1
0 100 200 300 400 300 500 700 &00 900 1000

Generation

Fig. 7. Convergence of the algorithm [2] fBy, the case of maximum values.
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RMS training set error: 0.90635 Variation explained: 99.8721 %

0 T T T T T
50+
= Predicted y (training values)
-100 Actual y (training values)
_150 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Data point
Fig. 8. Steel, average values, RMS,.

o350 (a2 142 % 005582,
© X1
= BTI80% 235,05 —L203 %t
2k txy | BBy
7800.0 (Xr LM S—

x3 235.0 (0.8196 xzteX2t] -445712,45)

) 407.0 (x2+cx] Hxg—1 .445)
3.383x1+3.383x2—-7.21 +

2838.0 (x1+2x2)
xo+1.445

0.5912 x9 (0.137»1 x3+0.1371 1938 —x3 )

3.383
X1 +X2+T*

120.3 (x3+5.514)
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xa+1.445

(5.186:105) x»

2w —mp 3885 _ DT0TxGFT T

T ok 58 TRET) ) T
- 2x240.6822 x5+ 2 - : _1.164
c12 (01804 x3 —3.383 R LIy T 3168 x5
x14( *3 ) o Ean AL e GBI gy
5.3%3 o+ 315 1) 530070
(191.106) [ o220l g TR0 (%2—3.383)
795.0 + 2838.0 c*2 72161 (x5 40.3121) x1—1.18xg4c¢ 3

x1+0.9289

X3

7081.0

Fig. 9. Steel, average values, formula Fyrvariable.

RMS training set error: 5.9525 Variation explained: 98.2553 %

0 T T T T T T T
-100 -
= Predicted y (training values)
=200 Actual y (training values)
_3[][] 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Data point

Fig. 10. Steel, average values, RMS,.

¥ = 0.06636 x1—7995.0 X34+ 737.3 x53—0.03318 &% (e+9-336) L () 13318 o1 X X1 32235 4

0.03318 ("R:ﬂ%.%g)
231.5 e+ X; —865.1x3 (2% — x3 + 0.242)—0.03318 x1 x5 —
57.87x2 (%1 — x3)+1810.0x2 {e — 2x3 — 2%, + 2™ + 1)—865.1%s (2x3 — 9.242 x5 — x3 + 9.242)—

1499 ((ce=x1 _x. 1 1 txaU.55
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5787 [ €1 —xa+32 4 1
’ (e S x9? (x019.253) <x170.7918x3+x17_2)
x2? (x2+9.336)
0.05956 {x3—e*1) (x;j oy 2282

x22

—0.03318 % (&‘,)q + x4 Xg) (XQ + 0.2408 X3 + 1339)—

X1

)
2 (T—)‘QJW*XH»:LSOQ) — 2660.0

Fig. 11. Steel, average values, formula Fgrvariable.

RMS training set error: 4.9325 Variation explained: 95.1835 %

200 T T T T T T
Predicted y (training values)
1501 Actual y (training values) b
=
100
50 1 1 1 Il 1 1 1
0 2 4 6 8 10 12 14 16
Data point

Fig. 12. Steel, average values, RMS.,.
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Fig. 13. Steel, average values, formula Fyrvariable.

RMS training set error: 1.0944 Variation explained: 99.9757 %

400 T T T T T T
Predicted y (training values)
300 - Actual y (training values) b
= 200
100
0 1 1 1 1 1 1 1
0 2 4 ] 8 10 12 14 16

Data point
Fig. 14. Steel, maximum values, RMF-,.

y = 25643, —5161.0x,—7.802 x5~ 125.8 33175 —256.4 ¢ +2132.0x, xp
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B T ) 9581037 12564 (52307 8317 + 23x9) H0.003538 03 (235 — LA2T) 4
ST T ) L

Fig. 15. Steel, maximum values, formula fBg variable.

RMS training set error: 5.4613 Variation explained: 99.5865 %

600 T T T T T T T
Predicted y (training values)
400+ Actual y (training values) _
P
200 F
U 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Fig. 16. Steel, maximum values, RMS-,.
y = —2E— — 1047.06"%" 22 £ 50377.0x, M2 4 a4
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(5,283-1()”) (e 2 —ex12x2+“xg ) 70006 s B 18.2x3 €22 (x2+e 2t =5 ) N 13.97Tx1e X253 (X:H—?e" 2+9.419) -
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3.624 - 10°

Fig. 17. Steel, maximum values, formula féy variable.

RMS test set error: 1.5114 Variation explained: 99.6655 %

200 T T T T T
Predicted y (test values)
160 Actual y (test values) E
100 F v\/ |
50 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Data point

Fig. 18. Steel, maximum values, RMF-,.
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285.9
36.93 %7 x3 (1
X3

y = 283.5x,—8457.0x,—2137.0x35—
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Very few papers deal with GP applied discovering of [3]

formulas that describe the cutting force during ifling
process. In fact, only one paper is known [2] by llest
knowledge of the authors. If we use a single gé¢ine,

convergence of population is considerable slow; thel4]

number of populations is considerable increaseutder

to achieve a good performance. Even in this cdse, t
performance is not as good as in the case of riltip
gene regression but the formula is simple in comspar
with multiple gene regression. The saturation isspnt
around the 5 000 generation and the fitness vabesrut
decrease even at 15 000 generation.

7. CONCLUSIONS

In this paper, the authors accomplished a thoreagh
search on the use of genetic algorithms in modglie
cutting forces resulting in the milling process.eTanaly-
sis of this research revealed the following:
it demonstrated that the use of genetic algoritiens
modern and suitable for modelling the cutting ferce
obtaining suitable results similar to real ones;
modelling results using genetic algorithms andfiarti
cial neural networks indicate that output reprasgnt
the cutting forces can be predicted with a verylsma
error of the order of 1f)
genetic algorithms have a very good learning power
their accuracy increasing with the number of leagni
data sets;
by modelling with genetic algorithms it has been ob
served that if a single gene is used, then the lpoepu
tion convergence is considerably slower;

not get as good performance as in the use of niltip

regression. The only advantage would be that they
would get a simpler formula. Saturation occurs at

to achieve a better performance of the genetic-algo
rithm it is necessary to increase considerably the
number of populations. Even in this case, one could[ll]
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M. Milfelner, F. Cus, J. Kopac, Machining angtimiza-
tion of 3D sculptured surfaces in ballend millingskd on
combined artificial intelligence, articol disporiibia
http://fs-server.uni-

mb. si/si/inst/ips/labod/ DATOTEKE/ 011123401. p

df , accessed: 14.01.2012.

S. GallovaGenetic Algorithm as a Tool of Fuzzy Parame-
ters and Cutting Forces OptimizatioRroceedings of the
World Congress on Engineering, vol. IWCE, 2009, Lon-
don, U.K.

A.C.A Conceicao, C.F. Castro, and J.P. Davim, “Optimi-
sation of multi-pass cutting parameters in facdingjl
based on genetic searcimt J Adv Manuf Technplol.44,
pp- 1106-1115, 2009.

R.J. Saffari, M.R. Razfar, A.H. Salimi, and M.M. Khani
“Optimization of Machining Parameters to Minimizedl
Deflection in the End Milling Operation Using Geiget
Algorithm” World Applied Sciences Journaiol.6 (1), pp.
64-69, 2009.

M.A.U. Patwari , A.K.M. Nurul-Amin , M.D. Arif “Opti-
mization of Surface Roughness in End Milling of Madi
Carbon Steel by Coupled Statistical Approach with Ge-
netic Algorithm,” Special Issue of the International Jour-
nal of the Computer, the Internet and Managem¥iol.

19 No. SP1, June, 2011.
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around 5 000 generations but does not diminish thg12] Azlan Mohd Zzain, Habibollah Haron, Safian ShaGe-

value or suitability to the generation number 18.00
even this method of modelling is mostly used in op-
timization of cutting process, it proved to be exit

ble approach and through introduction of modeling
with genetic algorithms in studying the cuttingdes
very closed to reality models were obtained thatdor
original contribution to the dataset and the materi
used.
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