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Abstract: The accelerated developement of computers and software (particularly free and open-source 
software) made more accessible, for a large category of researchers and engineers, the use of computer 
aided simulation techniques. In general terms, the Monte Carlo Method (MCM) or Monte Carlo 
Simulation (MCS) can be used to describe any technique that approximates solutions to quantitative 
problems through statistical sampling The Monte Carlo simulation has important applications for 
discret-event systems (usual in manufacturing), stress/strength stochastic modeling (in design), reliabil-
ity, maintainability and availability evaluation. Simulation in system reliability analysis is based on the 
MCS method that generates random failure times from each component's failure distribution. As practical 
exemplification the paper presents a few Monte Carlo simulation procedures and a manufacturing case 
study.  
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1.  INTRODUCTION AND HISTORY 1 
 

The name Monte Carlo was applied to a class of 
mathematical methods first used by scientists for the 
development of nuclear weapons in Los Alamos in the 
1940s [29]. The Manhattan Project for the atomic bomb 
used extensively code words: Monte Carlo was used for 
the solving technique using random numbers (RN). On 
the Manhattan Project, with complicated partial 
differential equations, impossible to be solved by hand, 
were rearranged for RN, then RN tables assisted the 
problems solving. The earliest computer ENIAC was 
used with a crude RN generator [2]. 

While there is no essential link to computers, the ef-
fectiveness of numerical or simulated gambling as a 
serious scientific pursuit is enormously enhanced by the 
digital computers. Carrying out games of chances or 
random sampling will produce anything worthwhile.  

The Monte Carlo Method (MCM) or Monte Carlo 
Simulation (MCS) describe any technique that 
approximates solutions to quantitative problems 
through statistical sampling [10]. MCS gives a method 
for propagating (translating) uncertainties in model 
inputs into uncertainties in model outputs (results MCS 
relies on the process of explicitly representing 
uncertainties by specifying inputs as probability 
distributions). If the inputs of a system are uncertain, the 
prediction of future performance is necessarily uncertain. 
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 The result of any analysis based on inputs represented 
by probability distributions is itself a probability 
distribution. The probability distribution of performance 
propagate the input uncertainties into uncertainties in the 
results. MCS is the most common technique for 
propagating the uncertainty of a system to the predicted 
performance [10]. For each realization, all the uncertain 
parameters are sampled. The system is then simulated in 
time to compute the system performance. The results of 
the independent system realizations are assembled into 
probability distributions of outcomes [10].  

The first step in studying a system is to build a model 
to obtain predictions on the system`s behavior [14]. 

In Bayesian statistics, it must to integrate over the 
posterior distribution. Markov Chain Monte Carlo tech-
nique is a Monte Carlo integration method which draws 
samples from the target posterior distribution [8]. 
 
2.  STRESS/STRENGTH STOCHASTIC 

MODELING  
 

Stress/Strength interference theory is a technique to 
quantify the probability that the strength of an item is 
less than the stress to which it is subjected. If the distri-
bution of the strength is quantified, and the distribution 
of the stress it is under can be quantified too, the area of 
intersection of the two stresses represents the probability 
that the strength is less than the stress [17]. The goal of 
any design for robustness is to minimize the variance of 
both distributions, and maximize the separation of the 
means; the probability of distribution intersection, or 
failure, is minimized (Fig. 1) [17]. 

This stress can be modeled using closed-form equa-
tions, as a function of dimension, force, deflections, etc. 
For complex structures, finite element models and analy- 
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Fig. 1. Stress Strength Methodology [

 

 
Fig. 2. Stress/strength probability density functions [
 

sis (FEA) simulate stresses. The inherent strength distr
bution and properties are important as a function of time 
(the fatigue properties of the material pertain to the 
strength degradation over time [17]). MCS is the most 
common approach for fatigue reliability analysis.  
 Part strength must excced part stress to operate 
properly. Since strength and stress are both random, there 
is always a slight chance that stress will exceed the 
strength of the part, (the intersection -shaded area
graphs in the Fig. 2).The expected probability
(reliability R) , is [16]: 
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 The above calculation assumes both stress and 
strength are in the positive domain. For general cases, the 
expected reliability uses the following equation:
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where: L ≤  X1 ≤ U;  X1:Stress; X2:Strength
L = 0, the above two equations are the same. 
and strength distributions can be estimated. Variations in 
the model parameters and probability values
ed with the calculated probability [16].  
 If the distributions for stress and strength are known, 
the reliability (1) is the probability that strength is larger 
than stress. Since both strength and stress are random 
variables (RV), the reliability is also a RV. Since stress is
a RV, for any stress value xi, there is a reliability value 
of R(xi) calculated from the strength distribution. From 
these R(xi)s, it can get the mean and variance of the reli
bility and the two-sided confidence intervals [
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Fig. 3. Computer aided stress/strength evaluation [

 

 
 The software Weibull++ [20
the distribution of the diameter
part dimensioning. These RN 
dom stress values. A distribution can be fitted to obtain 
the failure governing stress distribution 
 The steps to estimate the reliability are:
1. Identify failure modes or failure mechanisms (m

chanical static/dynamic, chemical, electrical, phys
cal, structural, or thermal) of the component. 

2. Identify appropriate failure model mean 
stress/strength characteristics.

3. Identify design parameters for stress and strength
4. Collect the appropriate data to calculate the statistics 

for stress and strength 
5. Calculate the reliability and safety margin 
 
3.  MONTE CARLO SIMULATION IN 

RELIABILITY, MAINTAINABILITY AND 
AVAILABILITY 

 

 In reliability analysis the 
when the analytical solution is not attainable and the 
failure domain cannot be appr
form. Sampling techniques (varianc
the computational efficiency by reducing the sta
error inherent in MCS [5]. 
 MCS is usually coupled with genetic algorithm to 
optimize maintenance policy. 
mized block replacement as a maintenance policy 
spare provisioning policy; now t
are optimized simultaneously: preventive maintenance 
time plan, labor workforce size, and inventory level
and 7].  
 The main features of the
model are: ranking of repairs
policy, objective function (the total maint
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20] generates RNs based on 
the distribution of the diameter d and the load F in the 

RN are used to calculate ran-
dom stress values. A distribution can be fitted to obtain 

e governing stress distribution [20]. 
The steps to estimate the reliability are: 
Identify failure modes or failure mechanisms (me-
chanical static/dynamic, chemical, electrical, physi-
cal, structural, or thermal) of the component.  

iate failure model mean 
stress/strength characteristics. 
Identify design parameters for stress and strength 
Collect the appropriate data to calculate the statistics 

Calculate the reliability and safety margin [15]. 

SIMULATION IN 
RELIABILITY, MAINTAINABILITY AND 

In reliability analysis the MCS is often employed 
when the analytical solution is not attainable and the 
failure domain cannot be approximated by an analytical 

Sampling techniques (variance reduction), improve 
the computational efficiency by reducing the statistical 

is usually coupled with genetic algorithm to 
optimize maintenance policy. A simulation tool opti-
mized block replacement as a maintenance policy and the 

; now three decision variables 
simultaneously: preventive maintenance 

time plan, labor workforce size, and inventory level [6 

 MCS-based maintenance 
epairs, preventive maintenance 

the total maintenance cost 
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plus economic loss, to be minimized). 
dure is: 
 

•  Failure times of equipment are sampled using the 
“current” reliability function of equipment. 
imperfect maintenance assumption, the reliability 
function changes with time. 

•  At failure times of equipment, the type of failure 
modes that caused equipment failure is sampled in 
accordance with the probability of occurrence.

•  The cost of corrective maintenance, the repair time, 
and the economic losses are determined correspon
ing to the type of identified failure modes.

•  Preventive maintenance requests for equipment are in 
accordance with the predetermined preventive 
maintenance schedule (PM policy) [

 

 In the availability study, based on the ava
related subsystems, are presented two methods of a
sessing the availability of a turbogenerator group
starting element is the block diagram for parametric 
reliability analysis of the group and a
gram, based on the operating values, appreciate the nu
ber of simulation for the accuracy of results [
 Many complex systems cannot be broken down into 
groups of series and parallel components [
system can be broken down into series/parallel config
rations, it is a relatively simple analytical formula for the 
system's reliability, for example for the exponential di
tribution; in all other cases (even for normal distribution) 
the solutions are far more complicated. Th
values for the components are determined 
or accelerated life data analysis techniques and the sim
lation determine the reliability of the entire system [
 Simulation in system reliability analysis is based on 
the MCS method that generates random failure times 
from each component's failure distribution. The overall 
system reliability is obtained by simulating system oper
tion and calculating the reliability values for a series of 
time values. As drawbacks: the results depend o
number of simulations, and most of the reliability opt
mization and allocation techniques cannot be applied.

The system simulation is different from the analytical 
methodology. While one can perform a MCS based on 
the results of the analytical system reliability solution, 
the methodology described below uses MCS of 
the individual components to estimate the overall system 
reliability [23]. 
 BlockSim simulation software [Reliasoft 20], has as 
inputs the end time for the estimated reliability and the 
number of increments. The Use Seed 
the seed value for the generation of RNs (Fig.4)

 

 
 

Fig. 4. Reliability simulation inputs and setup [
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Simulation in system reliability analysis is based on 
that generates random failure times 

from each component's failure distribution. The overall 
system reliability is obtained by simulating system opera-
tion and calculating the reliability values for a series of 
time values. As drawbacks: the results depend on the 
number of simulations, and most of the reliability opti-
mization and allocation techniques cannot be applied. 

The system simulation is different from the analytical 
methodology. While one can perform a MCS based on 

reliability solution, 
the methodology described below uses MCS of 

to estimate the overall system 

BlockSim simulation software [Reliasoft 20], has as 
inputs the end time for the estimated reliability and the 

 allows to choose 
the seed value for the generation of RNs (Fig.4) [23]. 

 

. Reliability simulation inputs and setup [23]. 

 The next inputs are the number of inner loops
and of outer loops (OL). The product of the two values 
gives the total number of simulations. The number of 
indicates the number of simulation points for
ponent. The number of OL indicates the number of rep
titions of the ILs [23]. 
 

 The simulation procedure has the following steps[
1 Fix the number of points to generate (IL).
2 For each run, generate a RN between 0 and 1.
3.  Obtain a failure time for each component based on 

this RN. 
4.  Keep the smallest time-to

sponding component (i.e., time
less than the desired mission time).

5. Check which components or combination of comp
nents cause system failure. 

6. The unreliability of the system is the number of times 
the system was found to have failed divided by the t
tal number of runs. The reliability of the system is 
100% minus the unreliability.

7. Return to Step 2 and repeat the procedure for the 
desired number of cycles (OL).

8. The reliability of the system is the summation of the 
reliabilities of the OL divided by the number of OL
(the average reliability). The process is repeated, and 
results averaged to system reliability each time [

 

 The system reliability-cost simulation uses the prob
bility density function (PDF) of the time
(TBF) for each component [
MTBF and a coefficient of variation (COV) for each 
component, and the model calculates the component 
PDFs/CDFs of the TBFs. A
estimates the system failure rate, 
number of failures for each component and the cost to 
replace failed components gives
level. The Reliability-Cost Tradeoff is based on a user
supplied relationship between reliability and cost for 
each component, to determine the reliability of each 
component to maximize the system reliability and min
mize the acquisition and repair cost
rithm has been developed to calculate the Pareto front 
between reliability and associated cost [
on the Pareto front is mapped to a target component
reliability and cost resulting the given system level reli
bility and cost [22]. 
 For the redundancy allocation are considered the 
stochastic reliabilities of the components and to arrive at 
the optimal solution is employed Monte Carlo simulation 
technique [21].  
 
4.  MANUFACTURING MODELING AND 

SIMULATION 
 

 The manufacturing industry operates in an unpredic
able environment characterized by increasing glob
competition and price erosion:
such as manufacturing simulation assist manufacturers 
make economical use of resources and materials, 
process analysis assistance and
pare for fluctuations in demand

Table 1 provides illustrations of syst
and the types of design, planning, and operational issues, 
using modeling and simulation [
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Obtain a failure time for each component based on 
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Check which components or combination of compo-

 
The unreliability of the system is the number of times 

have failed divided by the to-
tal number of runs. The reliability of the system is 
100% minus the unreliability. 
Return to Step 2 and repeat the procedure for the 
desired number of cycles (OL). 
The reliability of the system is the summation of the 

iabilities of the OL divided by the number of OL 
the average reliability). The process is repeated, and 

reliability each time [23]. 
cost simulation uses the proba-

bility density function (PDF) of the time between failures 
(TBF) for each component [22]. The user supplies a 
MTBF and a coefficient of variation (COV) for each 
component, and the model calculates the component 

A Monte Carlo simulation 
estimates the system failure rate, λ (t), and R(t). The 
number of failures for each component and the cost to 
replace failed components gives the cost for a reliability 

Cost Tradeoff is based on a user-
supplied relationship between reliability and cost for 

, to determine the reliability of each 
component to maximize the system reliability and mini-

the acquisition and repair cost. A heuristic algo-
rithm has been developed to calculate the Pareto front 
between reliability and associated cost [22]. Each point 
on the Pareto front is mapped to a target component-level 
reliability and cost resulting the given system level relia-

For the redundancy allocation are considered the 
stochastic reliabilities of the components and to arrive at 

ptimal solution is employed Monte Carlo simulation 

MANUFACTURING MODELING AND 

The manufacturing industry operates in an unpredict-
able environment characterized by increasing global 
competition and price erosion: innovative technologies 
such as manufacturing simulation assist manufacturers 
make economical use of resources and materials, for 

nd improve quality and pre-
pare for fluctuations in demand.  

Table 1 provides illustrations of systems and areas 
and the types of design, planning, and operational issues, 
using modeling and simulation [3]. 
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Table 1 
 Modeling and Simulation of Manufacturing Areas [3] 

 

Type of System Design, Planning, and 
Operational  Issues 

Manufacturing Systems Plant design and layout 
 Continous improvement 
 Capacity  management 
 Agile manufacturing 

evaluation 
 Scheduling and control 
 Materials handling 
Transportation systems Railroad system performance 
 Truck scheduling and routing 
 Air traffic control 

Terminal and depot 
operations 

Computer and 
communication 
systems 

Performance evaluation 

 Work-flow generation and 
analysis 

 Reliability assessment 
Project planning and 
control 

Product planning 

 Marketing analysis 
 Research and development 

performance 
 Construction activity planning 
 Scheduling project activities 
Financial planning Capital investment decision 

making 
 Cash flow analysis 
 Risk assessment 
 Balance sheet projections 
Environmental and 
ecological studies 

Flood control 

 Pollution control 
 Energy flows and utilisation 
 Farm management 
 Pest control 
 Reactor maintainability 
Health care systems Supply management 
 Operating room scheduling 
 Manpower planning 
 Organ transplantation policy 

evaluation 
 
 

 
Table 2 

 Manufacturing components [4] 
 

Product Resources Demand Control 
Parts/pieces Equipment 

layout 
Customers 
orders 

Warehouse 
management 

Routings Number of 
machines 

Start date Inventory 
control 

Process 
times 

Downtime Due date Shop floor 
control 

Setup times Preventive 
maintenance 

WIP in-
ventory 

WIP tracking 

Bill of 
materials 

Storage areas  PLCs 

Yeld Tools/fixtures  Station rules 
Rework Labor-

classification 
Shift sched-
ules 

  

 Process improvement starts with measurement, data 
collected, and simulation (a decision-making tool for 
system understanding) [4]. The "as built" models provide 
manufacturers an evaluation of the capacity of the system 
for new orders, equipment downtime, etc. and schedule 
to run the facilities. Table 2 shows how details are added 
as the model validation process proceeds. During model 
validation, details are added as the model approaches an 
acceptable level of accuracy [4]. 
 
4.1. Manufacturing Modeling Features  
 Manufacturing simulation models are developed with 
general-purpose and manufacturing-focused tools, with 
ease of use and flexibility. Manufacturing-oriented pack-
ages are Arena, AutoMod, AutoMod, HyperMesh, 
ProcessModel, ProModel, Witness, etc. [9].  
 Most manufacturing processes have random or un-
predictable variables in their environment or compo-
nents; then, stochastic modeling simulates the system. 
Output data of the simulation are random too and esti-
mates of the true characteristics of the model: multiple 
runs are necessary, and the results across replications 
provide an estimate of the system expected performance. 
 In a continuous simulation, state variables change 
continuously; in a discrete one, variables change only at 
a finite number of points in time. In discrete-event sys-
tems the state variables change instantaneously through 
jumps at discrete points in time, as: traffic systems, flexi-
ble manufacturing systems, inventory systems, produc-
tion lines, etc. [11]. Most manufacturing systems are 
modeled as dynamic and discrete event simulations 
(DES) in industries including automotive, military, etc. 
DES is used to analyze overall manufacturing environ-
ments (adding new equipment, upgrading existing ma-
chines, changing factory layout), specific issues, and 
individual measures of performance.  The simulation 
models were developed with general-purpose program-
ming languages (FORTRAN, C, BASIC, PASCAL, etc.) 
and special-purpose simulation languages such as SLAM 
II (with manufacturing modules for conveyors and auto-
mated guided vehicles), SIMAN, and GPSS [12]. They 
offer RN generation, use different probability distribu-
tions, modeling elements, etc. Other class of software, 
simulators, with a graphical interface, model system 
randomness (interarrival times, processing times, down-
times, etc.) with theoretical probability distributions. The 
software contains standard distributions and a multiple-
stream pseudorandom number generator and it make 
independent replications of the model. At present [13] it 
develops the Open Source software (Facsimile -open-
source discrete-event simulation/emulation library, 
SimPy, Tortuga -discrete-event simulation in Java, etc.), 
and many commercial software: AutoCAST (for casting 
technologies), GoldSim (system dynamics of discrete 
event simulation, embedded in a Monte Carlo frame-
work), MATLAB, NEi Nastran (simulation of stress, 
dynamics, and heat transfer), SIMUL8, Simulink, 
Vensim (system dynamics,  discrete elements; optimiza-
tion and Monte Carlo) [13]. 
 

 In manufacturing is important the time between two 
consecutive breakdowns: the system reliability requires 
evaluation of individual machine reliabilities and the line 
reliability. Techniques as reliability network reduction, 
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minimum cut set, etc. are not enough. M
probability of non-interrupted operation of a manufactu
ing system (with m machines arranged in series) for a 
specified period of time; i-machine index
ber of iterations, T − lifetime of a manufacturing system
p − system probability to fails before 
lifetime of the system, RE − relative 
DRE − desired relative error, ti − machine 
− PDF of machine i lifetime, Xi − RV having a 
The Monte Carlo algorithm is [24]: 
Step 0. Initialize: number of failures f =

ber k = 0, total number of iterations =
Step 1. Set k = k + 1. Generate random varieties 

given f(xi) for all i; set t1 = X1~ f(x1), 
tm = Xm~ f(xm). 

Step 2. Calculate the system lifetime T=
Step 3. If T < DLT, set f = f + 1, else f =

Step 1, otherwisw go to Step 4. 
Step 4.  Calculate a relative error of the 

= Prob(System fails before DLT) = f
 

 

p(1

p̂

)p̂(
)p̂V.(:C   RE ===

Var

 
If RE < DRE, then p = f / n, Stop. Otherwise go to Step 5.
Step 5. Calculate the number of additional iterations 

required to achieve DRE. 

Set n = additonal number of iterations

f = 0, k = 0, go to Step 1 [24].  
 
5.  MONTE CARLO SIMULATION CASE STUDY
 

 Let us consider two work places in a machine tool 
repair shop, where a main shaft is disassembled. The 
bearings are dismantled in the first work place, A, and 
the gears are dismantled in the work place B. The work 
place A dismantle operation is the first one in 
flux and then follows the transfer of the shaft to the B 
work place for the next disassembly work. The transport 
takes 15 minutes, and from now on the gears are disma
tled from the shaft I. The necessary mean time for the 
bearings dismantle is 55.5 minutes, respectively 44.5 
minutes for the gears.  

The shafts succeed one after other during the work 
and made a row, but during the evolution of the work 
flow it is possible to interpose waiting times. 
The goal of the Monte Carlo simulation is to find 
mean length of the waiting queue for shafts and the ave
age yield of the dismantling line.  
 The field data for the dismantling times of the two 
work places are RV: the histograms of these times are 
plotted in Fig. 5 (work place A-200 values) 
(work place B-180 values). Supplementary the freque
cies of work place A are detailed in Table 3.

The field data frequencies for the dismantling times of the 
work place A 
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Fig. 5. Histogram of the field data for the work place A

 

 

Fig. 6. Empirical cumulative function of the field data for the 
dismantling times of the work place A

 

 

Fig. 7. Histogram of the field data 
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Fig. 8. Empirical cumulative function
for the dismantling times of the work place B

 
 The cumulative distributions 
summation of the relative frequencies with a dismantling 
length smaller then a fixed value (
 The number 100 corresponds
the cumulative frequency. Figure 
based on the histogram from Fig
sponds to the maximal value 20
example that 74% corresponds
74% of the work operation the dismantle takes less than
60 min. 

The properly simulation starts with generation of 
of RNs (here was used the RND function from MSExcel,
and a  simple  Macro to obtain only values between 0 and
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Empirical cumulative function of the field data for the 

dismantling times of the work place A. 

 
Histogram of the field data for the work place B. 
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Empirical cumulative function (ECF) of the field data 
for the dismantling times of the work place B. 

The cumulative distributions were calculated through 
summation of the relative frequencies with a dismantling 

a fixed value (Figs. 6 and 8). 
corresponds to the maximal value of 

ure 6 is cumulative plotted 
Fig. 5. Number 100 corre-

to the maximal value 200; it is easy to read as 
corresponds to the time 60min:  in 

the dismantle takes less than 

The properly simulation starts with generation of a set 
of RNs (here was used the RND function from MSExcel, 
and a  simple  Macro to obtain only values between 0 and 
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Table 4 
The dissasembly times for work places A and B, on the 

basis of RNs  
 

No. 
Exp. 

Work place A Work place B 
RN Disman-

tle time 
RN Disman-

tle time 
1 44 55 72 50 
2 89 65 69 50 
3 48 55 81 50 
4 35 50 70 50 
5 66 60 75 50 
6 87 65 10 35 
7 30 50 22 40 
8 39 55 63 50 
9 8 40 11 35 
10 12 45 51 45 
11 28 40 73 50 
12 45 45 18 40 
13 67 45 35 45 
14 62 45 9 35 
15 36 45 65 50 

Total  760  675 
 
100). These RN should then be converted in dismantling 
times using the EDF plot. As illustration (Fig. 6) for the 
work place A the RN is connected through a horizontal 
line with the EDF plot: the intersection point has the 
abscise 55, which give a dismantling time of 55 minutes. 
Appling the same graphical solution was produced a big 
number of dismantling times for A and B work places (it 
can be developed an analytical solution too!). Two set of 
15 RN and dismantling times are presented in Table 4. 
 Comparing the dismantling times, it will be selected 
the most efficient order of the work places A and B. 
 

 
 
 

6.  CONCLUSIONS  
 

 Most manufacturing processes have random or un-
predictable variables in their environment or compo-
nents; then, stochastic modeling is used to simulate the 
system in question. The accelerated developement of 
computers and software (particularly free and open-
source software) made more accessible, for a large cate-
gory of researchers and engineers, the use of computer 
aided simulation techniques. In general terms, the Monte 
Carlo Method or Monte Carlo Simulation can be used to 
describe any technique that approximates solutions to 
quantitative problems through statistical sampling The 
Monte Carlo simulation has important applications for 
discret-event systems (usual in manufacturing), 
stress/strength stochastic modeling (in design), reliabil-
ity, maintainability and availability evaluation. Simula-
tion in system reliability analysis is based on the MCS 
method that generates random failure times from each 
component's failure distribution. As practical exemplifi-
cation the paper presents a few Monte Carlo simulation 
procedures a manufacturing case study.  
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