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Abstract: The accelerated developement of computers and aeft{particularly free and open-source
software) made more accessible, for a large catggdresearchers and engineers, the use of computer
aided simulation techniquedn general terms, the Monte Carlo Method (MCM) ootk Carlo
Simulation (MCS) can be used to describe any teckenthat approximates solutions to quantitative
problems through statistical sampling The Monte |€asimulation has important applications for
discret-event systems (usual in manufacturinggsstistrength stochastic modeling (in design), bélia

ity, maintainability and availability evaluationirBulation in system reliability analysis is baseal the
MCS method that generates random failure times feanh component's failure distribution. As practica
exemplification the paper presents a few Monte @€ainulation procedures and a manufacturing case
study.
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1. INTRODUCTION AND HISTORY The result of any analysis based on inputs reptede
. y probability distributions is itself a probabylit
The name Monte Carlo was applied to a class mgistribution. The probability distribution of perfmance

mathematical methods first used .by scientists fmr t propagate the input uncertainties into uncertasrnitiethe
development of nuclear weapons in Los Alamos in the

) ) results. MCS is the mostcommon technique for
1940s [29]. The Manhattan Project for the atomimbo tina th tainty of tem to the ipted
used extensively code words: Monte Carlo was ueed f bropagatng te unceriainty ol 8 system ‘o e ip

h Vi hni ) q b RN). O erformance [10]. For each realization, all theeastain
the solving technique using random numbers (RN). .~ parameters are sampled. The system is then sirdulate
the Manhattan Project, with complicated partial

gif il . ) ibl b vedHand time to compute the system performance. The resfilts
Ifierential equations, impossible to be solve Ilay_ ' the independent system realizations are assembted i
were rearranged for RN, then RN tables assisted th

) : f)robability distributions of outcomes [10].
ﬂg;?jlivnili :ilmgg'Rtheﬁg:gte;t [;:]0 mputer ENIAC was™ tpe first step in studying a system is to build @ded

. . s to obtain predictions on the system’s behavior.[14
While there is no essential link to computers, ¢fie b y [14]

fcti ¢ al imulated bli In Bayesian statistics, it must to integrate oves t
ecpvenesg of numerical or simu ated gambling as 6bosterior distribution. Markov Chain Monte Carlahe
serious scientific pursuit is enormously enhancedhe

- . nigue is a Monte Carlo integration method whichwdra
digital computers. Carrying out games of chances or,

: . . i samples from the target posterior distribution [8].
random sampling will produce anything worthwhile.
_ The_Monte Carlo Methqd (MCM) or Monte Carlo 2 STRESS/STRENGTH STOCHASTIC
Simulation (MCS) describe any technique that MODELING
approximates solutions to quantitative problems . .
through statistical sampling [10]. MCS gives a roeth Stress/Strength interference theory is a technique

for propagating (translating) uncertainties in mode quantify the probability that the strength of aenit is
inputs into uncertainties in model outputs (resMES less than the stress to which it is subjectedhdf distri-

relies on the process of explicily representingbution of the strength is quantified, and the distiion
uncertainties by specifying inputs as probability Of the stress it is under can be quantified toe,atea of
distributions). If the inputs of a system are utmier the ~ intersection of the two stresses represents thieapility

prediction of future performance is necessarilyentain.  that the strength is less than the stress [17]. gda of
any design for robustness is to minimize the vaeaof
" Corresponding author: University Politehnica Bueisar both distributions, and maximize the separationthef
EELS g;igigégggy 0213155956 means; the probability of distribution intersectioor
ax: ; ; i ;
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Fig. 2. Stress/strength probability density functio18].

sis (FEA) simulate stresses. The inherent stredgtri-
bution and properties are important as a functibtinoe
(the fatigue properties of the material pertain the
strength degradation over time [L7MCS is the mos
common approach for fatigue reliability analys

Part strengthmust excced part stress to ope
properly. Since strength and stress are both ranteare
is always a slight chance that stress will exceesl
strength of the part, (the intersecti@ihaded are- of the
graphs in the Fig. 2)he expected probabili of success
(reliability R) , is [16]:

R= P{Stresss StrengthF [ f,..(}) (R . XA
0
(1)

The above calculation assumes both stress
strength are in the positive domain. For genersésathe
expected reliability usebe following equatior

L[t (¥dx

R T R

)

where:L < X;<U; X;:StressX;:Strengtl. WhenU = oo,
L =0, the above two equations are the sgThe stress
and strengthdistributions can be estimated. Variations
the model parameters and probability va are associat-
ed with the calculated probability [16].

If the distributions for stress and strength arevim,
the reliability (1) is thgorobability that strength is larg
than stress. Since both strength and stress ad®one
variables (RV), the reliabilitis also a RV. Since stres:
a RV, for any stress valug sthere is a reliability valu
of R(x) calculated from the strength distribution. Fr
theseR(x)s, it can get the mean and variance of thea-
bility and the twosided confidence interval16].
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The software Weibull++(] generates RNs based on
the distribution of the diametd and the loadr in the
part dimensioning. TheseN are used to calculate ran-
dom stress values. A distribution can be fittecbbain
the failue governing stress distributi|20].

The steps to estimate the reliability
1. Identify failure modes or failure mechanismse-

chanical static/dynamic, chemical, electrical, fi-

cal, structural, or thermal) of the compong

2. ldentify  appropiate  failure  model
stress/strength characterist

3. ldentify design parameters for stress and stre

4. Collect the appropriate data to calculate the Stesi
for stress and strength

5. Calculate the reliability and safety mar(15].

mea

3. MONTE CARLO SIMULATION IN
RELIABILITY, MAINTAINABILITY AND
AVAILABILITY

In reliability analysis theMCS is often employed
when the analytical solution is not attainable dhd
failure domain cannot be ajoximated by an analytical
form. Sampling techniques (varize reduction), improve
the computational efficiency by reducing thetistical
error inherent in MCS [5].

MCS is usually coupled with genetic algorithm
optimize maintenance policyA simulation tool opti-
mized block replacement as a maintenance pand the
spare provisioning policynow three decision variables
are optimizedsimultaneously: preventive maintenat
time plan, labor workforce size, and inventory I [6
and 7].

The main features of th&#CS-based maintenance
model are: ranking ofepair;, preventive maintenance
policy, objective function the total mairenance cost
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plus economic loss, to be minimizedhe MCS proce-
dure is:

e Failure times of equipment are sampled using
“current” reliability function of equipmentDue to
imperffect maintenance assumption, the reliab
function changes with time.

» At failure times of equipment, the type of fail
modes that caused equipment failure is sample
accordance with the probability of occurrel

e The cost of corrective maimance, the repair tim
and the economic losses are determined corrd-
ing to the type of identifiethilure mode:

» Preventive maintenance requests for equipmentn
accordance with the predetermined prever
maintenance schedule (PM poli¢g) 7].

In the availability study, based dhe avilability of
related subsystems, are presented methods of s-
sessing the availability of a turbogenerator g [1]. The
starting element is thdlock diagram for parametr
reliability analysis of the grou@nd ¢ simulation pro-
gram, based on the operating valugspreciate the -
ber of simulation fothe accuracy of result1].

Many complex systems cannot be broken down
groups of series and parallel componer23]. If the
system can be brokedown into series/parallel conu-
rations, it is a relatively simple analytical formuiar the
system's reliability, for example for the exponahtis-
tribution; in all other cases (even for normal dlisition)
the solutions are far more complicated.e reliability
values for the components ateterminecwith standard
or accelerated life data analysis techniques a@dsitru-
lation determine the reliability of the entire syst|23].

Simulation in system reliability analysis is basmu
the MCS methodthat generates random failure tin
from each component's failure distribution. The raile
system reliability is obtained by simulating systepea-
tion and calculating the reliability values for erigs of
time values. As drawbacks: the results depen the
number of simulations, and most of the reliabiliyi-
mization and allocation techniques cannot be ag

The system simulation is different from the analgt
methodology. While one can perform a MCS base!
the results of the analytical systenaliability solution,
the methodology described below uses MCS
theindividual componento estimate the overall syste
reliability [23].

BlockSim simulation software [Reliasoft 20], has
inputs the end time for the estimated reliabilitydahe
number of increments. Thése Seedllows to choose
the seed value for the generation of RNs (F [23].

Reliability/Maintainability Simulation Reliability/M aintainability Simulation
Fieliabilty | Maintainabilty | Setup | Fieliabiity | Maintainabilty  5etup
Fisliabilty up
End Time 52 The tatal number of simulations is equal to the number of auter
locps mukipiid by the number of innet loops.
Increments: 2
Outer| Inner |
Lee [
™ Uss Seed
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o e | Ef el ||| Cess |

Fig. 4. Reliability simulation inputs and set.23].

The next inputs are the number of inner Ic (IL)
and of outer loops (OL)The product of the two valu
gives the total number of simulations. The numkfelL
indicates the number afimulation points fc each com-
ponent. The number of Oihdicates the number of re-
titions of the ILs [23].

The simulation procedure has the following st23]:

1 Fix the number of points to generate (

2 For each run, generate a RN between 0 &

3. Obtain a failure time for each component base(
this RN.

4. Keep the smallest time-failure with the corre-
spondng component (i.e., tin-to-failure with a value
less than the desired mission tin

5. Check which components or combination of co-
nents cause system failure.

6. The unreliability of the system is the number aifds
the system was found t@ve failed divided by theo-
tal number of runs. The reliability of the systes
100% minus the unreliabilit

7. Return to Step 2 and repeat the procedure fo
desired number of cycles (O

8. The reliability of the system is the summation loé
reliabilities of the OL divided by the number of
(the average reliability). The process is repeated
results averaged to systegliability each time23].

The system reliabilityost simulation uses the pia-
bility density function (PDF) of the tin between failures
(TBF) for each componeni22]. The user supplies a
MTBF and a coefficient of variation (COV) for ea
component, and the model calculates the compc
PDFs/CDFs of the TBFsA Monte Carlo simulation
estimates the system failure rafe,(t), and R(t). The
number of failures for each component and the tm
replace failed components gi the cost for a reliability
level. The ReliabilityCost Tradeoff is based on a -
supplied relationship between reliability and cdst
each componentto determine the reliability of ea
component to maximize the system reliability andhi-
mize the acquisition and repair ¢c. A heuristic algo-
rithm has been developed to calculate the Paretat
between reliability and associated cc22]. Each point
on the Pareto front is mapped to a target comp-level
reliability and cost resulting the given systemeleselia-
bility and cost [22].

For the redundancy allocation are considered
stochastic reliabilities of the components andrtive at
the gtimal solution is employed Monte Carlo simulat
technique [21].

4. MANUFACTURING MODELING AND
SIMULATION

The manufacturing industry operates in an unpt-
able environment characterized by increasing al
competition and price erosic innovative technologies
such as manufacturing simulation assist manufact
make economical use of resources and materfor
process analysis assistanca amprove quality and pre-
pare for fluctuations in dema.

Table 1 provides illustrations of sems and areas
and the types of design, planning, and operatimsakes
using modeling and simulatio3].
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Modeling and Simulation

Table 1
of Manufacturing Areas [3]

Type of System

Design, Planning, and
Operational Issues

Manufacturing Systems

Plant design and layout

Continous improvement

Capacity management

Agile manufacturing
evaluation

Scheduling and control

Materials handling

Transportation systems

Railroad system performance

Truck scheduling and routing

Air traffic control

control

Terminal and depot
operations
Computer and | Performance evaluation
communication
systems
Work-flow generation ang
analysis
Reliability assessment
Project planning and | Product planning

Marketing analysis

Research and development
performance

Construction activity planning

Scheduling project activities

Financial planning

Capital investment decision
making

Cash flow analysis

Risk assessment

Balance sheet projections

Environmental and
ecological studies

Flood control

Pollution control

Energy flows and utilisation

Farm management

Pest control

Reactor maintainability

Health care systems

Supply management

Operating room scheduling

Manpower planning

Organ transplantation policy
evaluation

Table 2
Manufacturing components [4]
Product Resources Demand Control
Parts/pieces| Equipment Customers | Warehouse
layout orders management
Routings Number of| Start date Inventory
machines control
Process Downtime Due date Shop flogr
times control
Setup times | Preventive WIP  in- | WIP tracking
maintenance | ventory
Bill of | Storage areas PLCs
materials
Yeld Tools/fixtures Station rules|
Rework Labor-
classification
Shift  sched-
ules
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Process improvement starts with measurement, data
collected, and simulation (a decision-making toot f
system understanding) [4]. The "as built" modelsvjate
manufacturers an evaluation of the capacity ofsem
for new orders, equipment downtime, etc. and sdeedu
to run the facilities. Table 2 shows how details added
as the model validation process proceeds. Durindemno
validation, details are added as the model appezaah
acceptable level of accuracy [4].

4.1. Manufacturing Modeling Features

Manufacturing simulation models are developed with
general-purpose and manufacturing-focused toolth) wi
ease of use and flexibility. Manufacturing-orienfeatk-
ages are Arena, AutoMod, AutoMod, HyperMesh,
ProcessModel, ProModel, Witness, etc. [9].

Most manufacturing processes have random or un-
predictable variables in their environment or compo
nents; then, stochastic modeling simulates theeryst
Output data of the simulation are random too artd es
mates of the true characteristics of the model:tipial
runs are necessary, and the results across rémlisat
provide an estimate of the system expected perfacma

In a continuous simulation, state variables change
continuously; in a discrete one, variables changg at
a finite number of points in time. In discrete-eveys-
tems the state variables change instantaneoustughr
jumps at discrete points in time, as: traffic systeflexi-
ble manufacturing systems, inventory systems, produ
tion lines, etc. [11]. Most manufacturing systems a
modeled as dynamic and discrete event simulations
(DES) in industries including automotive, militargic.
DES is used to analyze overall manufacturing emviro
ments (adding new equipment, upgrading existing ma-
chines, changing factory layout), specific issuard
individual measures of performance. The  simulation
models were developed with general-purpose program-
ming languages (FORTRAN, C, BASIC, PASCAL, etc.)
and special-purpose simulation languages such A8ISL
Il (with manufacturing modules for conveyors andoau
mated guided vehicles), SIMAN, and GPSS [12]. They
offer RN generation, use different probability dist-
tions, modeling elements, etc. Other class of sarkw
simulators, with a graphical interface, model syste
randomness (interarrival times, processing timesyrd
times, etc.) with theoretical probability distribars. The
software contains standard distributions and a ipiett
stream pseudorandom number generator and it make
independent replications of the model. At presésq jt
develops the Open Source software (Facsimile -open-
source discrete-event simulation/emulation library,
SimPy, Tortuga -discrete-event simulation in Jata,),
and many commercial software: AutoCAST (for casting
technologies), GoldSim (system dynamics of discrete
event simulation, embedded in a Monte Carlo frame-
work), MATLAB, NEi Nastran (simulation of stress,
dynamics, and heat transfer), SIMUL8, Simulink,
Vensim (system dynamics, discrete elements; opémi
tion and Monte Carlo) [13].

In manufacturing is important the time between two
consecutive breakdowns: the system reliability negu
evaluation of individual machine reliabilities atie line
reliability. Techniques as reliability network redion,
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minimum cut set, etc. are not enouhCS estimate the

probability of noninterrupted operation of a manufar-

ing system (with m machines arranged in series)al
specified period of time; machine inde, n-initial num-
ber of iterationsT - lifetime of a manufacturing systt,

p — system probability tdails beforet, DLT — desired

lifetime of the systemRE - relative simulation error,

DRE - desired relative errot, — machinei lifetime, f(x;)

— PDF of machine lifetime, X; — RV having aPDF f(x;).

The Monte Carlo algorithm is [24]:

Step 0. Initialize: number of failurds= 0, iteration num-
berk = 0, total number of iteratiorsn.

Step 1. Sek =k + 1. Generate random varietiX; from a
givenf(x) for all i; sett; = X;~ f(xy), to = Xo~ f(X2),...,
tm= X~ T(Xm)-

Step 2. Calculate the system lifetiffremin {ty, t,,..., tr}.

Step 3. fT <DLT, setf =f + 1, elsef =f; if k<n, go to
Step 1, otherwisw go to Step 4.

Step 4. Calculate a relative error of simulation runP
= Prob(System fails before DLT)f# n

p(1-p)

RE=C: V.(p) = “VE@) =7p” : 3)

If RE< DRE, thenp =f/ n, Stop. Otherwise go to Stef
Step 5. Calculate the number of additional iterst
required to achieve DRE.
Set n = additonal numbeof iteration: = LCal)
DRE*p?
f=0,k=0, go to Step 1 [24].

5. MONTE CARLO SIMULATION CASE STUDY

Let usconsider two work places in a machine t
repair shop, where a main shaft is disassemblea.
bearings are dismantled in the first work place,afd
the gears are dismantled in the work place B. The:
place A dismantle operatian the first one irthe work
flux and then follows the transfer of the shaftthe B
work place for the next disassembly work. The tpamt
takes 15 minutes, and from now on the gears areen-
tled from the shaft I. The necessary mean timetliei
bearings dismantle is b.minutes, respectively 44
minutes for the gears.

The shafts succeed one after other during the !
and made a row, but during the evolution of the kn
flow it is possible to interpose waiting time
The goal of the Monte Carlo simulation is to fithe
mean length of the waiting queue for shafts andatrer-
age yield of the dismantling line.

The field data for the dismantling times of the t
work places are RV: the histograms of these tinres
plotted in Fig. 5 (work place 200 valuesand in Fig. 7
(work place B180 values). Supplementary the fren-
cies of work place A are detailed in Tabl

Table 3
The field data frequencies for the dismantling time®f the
work place A

tj 225| 275|325 | 375| 425|475 | 525| 57.5
275 325|375|425| 475| 525| 57.5| 625
f; 1 2 4 4 18 | 43 47 39

257
50
a0
z
S 30 -
g
20 |
* 10 |
0 4
25 30 35 40 45 50 55 60 65 70 75
Fig. 5. Histogram of the field data for the work plac.
Empirical CDF of work place A times
100
100
90
=in 50
70
. 60 60
=4
g 50
& 40 40 "
30
20 10
10
0 0
20 30 40 50 55 &0 70 a0

Fig. 6. Empirical cumulative function of the field data fibie
dismantling times of the work place.

60

IS
(=]

5
2

Frequency
=]

0
20 25 30 35

10 45 50 55

times

60 65

Fig. 7. Histogram of the field datfor the work place B.

Empirical CDF of work post B times

80

60

Percent

40

204

04-—'—'_'_

20 30 40 50 60 70
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The cumulative distributionwere calculated through
summation of the relative frequencies with a distlivam
length smaller thea fixed value Figs. 6 and 8).

The number 10@orresponc to the maximal value of
the cumulative frequency. Rige 6 is cumulative plotted
based on the histogram froRig. 5. Number 100 corre-
spondsto the maximal value 0; it is easy to read as
example that 74%orresponc to the time 60min: in
74% of the work operatiothe dismantle takes less tl
60 min.

The properly simulation starts with generatiora set
of RNs (here was used the RND function from MSE;
and a simple Macro to obtain only values betw@anc
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