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Abstract: The cylindrical worm – star wheel gear can be met in practice, for example, in transmissions 
with kinematical purpose, or in the construction of single screw compressors. Despite having a limited 
applicability, it presents an important advantage, consisting in the simplicity of its manufacturing. The 
paper suggests an analytical solution for finding the interference at the assemblage of cylindrical worm – 
star wheel gear, which is an important matter concerning the design of this type of transmission. The 
solution lies on a complementary theorem regarding surfaces enveloping, namely the theorem of plain 
generating trajectories family. An analytical algorithm has been developed in MatLab, in order to 
implement this solution. A numerical application, which was solved in a concrete case, is also presented. 
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1.  INTRODUCTION 1 
 

The cylindrical worm – star wheel gear can be met in 
practice, for example, in transmissions with kinematical 
purpose, or in the construction of single screw 
compressors, Fig. 1. 

The study of a gear whose elements have a non-
involute profile, in our case the gear formed by a star 
wheel and its conjugated cylindrical worm, can be 
realized on the base of the fundamental theorems of the 
enwrapped surfaces (Olivier, Gohman [2, 3]). It is also 
possible to solve the same problem by applying 
complementary theorems – the minimum distance 
method or the family of substitutive circles theorem [4]. 

 

 

Fig. 1. Single screw compressor [1]. 
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The enhancement of the capacities offered by the 
graphical design environments (e.g. CATIA) has enabled 
a new manner to address the particular problems of 
enwrapped surfaces. It consists in their 3-D modeling, 
followed by the application of specific algorithms, 
developed with the help of the dedicated theorems [5]. 

In this paper, we present an analytical algorithm, 
developed on the base of the theorem of plain generating 
trajectories family [6]. This algorithm is a tool for 
studying the interference that inevitably occurs when the 
width of star wheel teeth is significant. The method 
works by following the trajectories drawn by the points 
from the tooth profile, during the motion involved by the 
rolling process between the conjugated centrodes 
associated to the gear elements. The centrode of the 
worm axial section is rectilinear, while the one of the star 
wheel is a circle (see Fig. 2).  

The next section is dedicated to describe the profile 
of the star wheel tooth, and to introduce several reference 
systems, needed to solve the addressed problem. The 
third section purpose is to find the helical surface of the 
cylindrical worm flanks, conjugated to the surface of star 
wheel tooth, as a cloud of points. The fourth section 
deals with a numerical application of the algorithm, in a 
concrete case, while the last one is for conclusion. 

 
2.  THE STAR WHEEL PROFILE. REFERENCE 

SYSTEMS 
 

In Fig. 2, there are presented the rolling centrodes 
associated to the considered enwrapped entities, namely: 
• C1, which is the star wheel centrode – circle of Re 

radius (Re meaning the exterior radius of the star 
wheel), and 

• C2 – the rectilinear centrode of the conjugated 
cylindrical worm’s axial section. 
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Fig. 2. The rolling centrodes and the reference systems. 

 
 

The following reference systems are introduced, 
according to notations from Fig. 2: 
• xyz, meaning a global system, having z – axis 

overlaid to star wheel rotation axis, 
• XYZ – relative system, attached to C1, the star wheel 

centrode, and 
• ξηζ – relative system, attached to C2, the centrode of 

worm axial section. 
The angular parameter of the star wheel rotation is 

denoted by φ1. 
If we consider a triangular profile of the star wheel 

tooth, than the equations of its flanks, AB  and AC  are, 
in XYZ reference system: 
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In relations (1) and (2), Rr means the rolling radius 

(chosen in this case as equal to the exterior radius Re), 
while u and u1 are variable parameters. Their inferior 
limit value is obviously zero, while the superior limit can 
be found by imposing to B point the condition to belong 
to the circle of Ri radius: 

 

 ( ) 222

max

2

max sincos ir RuuR =ε⋅+ε⋅+− ,   (3) 
 

and similarly to C point (for finding max1u ). 

3.  THE CYLINDRICAL WORM PROFILE 
 

The profile of the cylindrical worm reciprocal 
enwrapped to the star wheel with triangular tooth profile 
can be determined by applying diverse methods. Here we 
present the plain generating trajectories method [6], 
which supposes the steps from below.  

 
3.1. The relative kinematics 

The absolute motions during the gearing process are: 
• The star wheel rotation, together with its centrode C1, 
 

 ( ) Xx T ⋅ϕω= 13 ; (4) 
 

• The translation of worm axial section, in correlation 
with C1 rotation, 
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The equation of the relative motion between the 

wheel and the worm results from relations (4) and (5): 
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This relative motion determines the families of flanks 

( ) 1ϕΣ AB  and ( )
1ϕΣ AC  in ξηζ reference system. After 

replacing the known form of the rotation transform 
matrix, ω3 and by developing the equation (6) we obtain: 
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for the family of left tooth flanks, and a similar form for 
the family of right tooth flanks.  

 
3.2. The enveloping condition 

We further address to the case of the worm flank 
reciprocal enwrapped to left tooth flank, the case of the 
other flank being very similar to the first one. The 
envelop of ( ) 1ϕΣ AB  profiles family is intended to be found 

by the plane generating trajectories method [6]. In this 
purpose, the directional parameters of the normal to 

ABprofile must be found: 
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Hereby, the equations of the normal to ABprofile 
result, written in XYZ reference system: 
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The equations of normals trajectories family can now 

be determined, by using (9) and (6): 
 

 ( )

( )
( )

( )
( )
.0

;coscossin

sinsincos

;sincossin

cossincos

11

1

1

1

1

=ζ
ϕ⋅+ϕε⋅λ−ε⋅−+

+ϕε⋅λ−ε⋅+−=η
++ϕε⋅λ−ε⋅−−

−ϕε⋅λ−ε⋅+−=ξ

ϕΣ

r

r

ir

r

N

Ru

uR

rRu

uR

T (10) 

 
By imposing the condition that the trajectory of a line 

normal to star wheel tooth flank passes by the gear pole 
P (see Fig. 1), 
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the specific enveloping condition results: 
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3.3. The worm axial profile 

The ensemble formed by equations (7) and (12) 
determines the axial profile of the worm (the rack-gear) 
reciprocal enwrapped to the star wheel with triangular 
tooth profile, having in principle the form: 
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At the same time, a discrete numerical form of the 

rack-gear profile can be determined: 
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By giving a helical motion of V axis and p helical 
parameter to the vector (14): 
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an ordinate cloud of points will result, as discrete 
expression of worm helical flank. Here, v means an 
arbitrary angular parameter, measured for the rotation 

around V axis. If v variation interval is discretized in m 

successive points, then the cloud of points describing the 
helical surface will consist in nm×  points. 

 
3.4. The interference at the assemblage 

Because the star wheel tooth flank is, in general, a 
cylindrical surface with the generatrice perpendicular to 
worm axis, an interference phenomenon occurs 
obviously if the two elements (star wheel and worm) are 
put together in order to form a gear. 

The interference can be studied by searching for the 
intersection point between the worm helical surface and 
the tooth flank in planes 

 
 Hz = , (16) 

 
while H parameter take values between zero and half of 
the star wheel thickness, B/2. 

The intersection point can be effectively found by 

numerical calculus. The ABsegment is firstly discretized 
in a given number of points having their co-ordinates 
expressed in ξηζ reference system: 
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with [ ]max,0 uuk ∈ , k = 1, 2, ... p.  

Then, for each couple (ξk, ηk) we have to search for 
the points belonging to the cloud describing the helical 
surface, which concomitantly satisfy the condition: 

 

 ( ) ( ) epskiki <η−η+ξ−ξ 22 , (18) 
 

and the restriction 
 

 2/Bi ≤ζ . (19) 
 

In relation (18), eps means a parameter with a very 
small, positive value (e.g. 10-3), adopted depending on 
the intended precision of the calculus. 

Hereby, each point (ξi, ηi, ζi) can be considered as a 
very close approximation (depending, obviously, on the 
value being set for eps parameter) of the point where the 
two surfaces (worm / wheel tooth) do intersect in the 
plane z = ζi. 
 
4.  NUMERICAL APPLICATION 
 

A numerical application has been developed with the 
purpose of studying the interference phenomenon. The 
application approaches the case of a right hand worm, 
having a single thread and a star wheel with triangular 
tooth profile. 

The nominal values of the parameters defining the 
geometry of the addressed gear are the following: 

 

• wheel internal radius: Ri = 40 mm; 
• wheel external radius: Re = Rr = 45 mm; 
• wheel width: B = 20 mm; 
• angle of wheel tooth flank: ε = 30º; 
• worm internal radius: r i = 30 mm; 
• worm helical parameter: p = 5/π mm. 
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Table 1 
Worm axial profile (co-ordinates) 

 

Crt 
no. 

Left flank Right flank 

ξ [mm] η [mm] ξ [mm] η [mm] 

1 30.0000 0.0000 30.0000 0.0000 

2 30.0051 −0.0029 30.0051 0.0029 

3 30.0102 −0.0059 30.0102 0.0059 

4 30.0153 −0.0089 30.0153 0.0089 

5 30.0205 −0.0118 30.0205 0.0118 

6 30.0256 −0.0148 30.0256 0.0148 

7 30.0307 −0.0178 30.0307 0.0178 

8 30.0358 −0.0207 30.0358 0.0207 

9 30.0410 −0.0238 30.0410 0.0238 

10 30.0461 −0.0267 30.0461 0.0267 

. . . . . . . . . . . . . . . . . . . 
496 32.6551 −1.7620 32.6551 1.7620 

497 32.6606 −1.7661 32.6606 1.7661 

498 32.6661 −1.7702 32.6661 1.7702 

499 32.6716 −1.7743 32.6716 1.7743 

500 32.6771 −1.7785 32.6771 1.7785 

501 32.6826 −1.7826 32.6826 1.7826 

502 32.6882 −1.7867 32.6882 1.7867 

503 32.6937 −1.7909 32.6937 1.7909 

504 32.6992 −1.7950 32.6992 1.7950 

505 32.7047 −1.7992 32.7047 1.7992 

. . . . . . . . . . . . . . . . . . . 
991 35.3869 −4.0365 35.3869 4.0365 

992 35.3923 −4.0415 35.3923 4.0415 
993 35.3978 −4.0466 35.3978 4.0466 
994 35.4033 −4.0516 35.4033 4.0516 
995 35.4088 −4.0567 35.4088 4.0567 
996 35.4143 −4.0617 35.4143 4.0617 
997 35.4198 −4.0668 35.4198 4.0668 
998 35.4252 −4.0718 35.4252 4.0718 
999 35.4307 −4.0769 35.4307 4.0769 
1000 35.4362 −4.0819 35.4362 4.0819 

 
 

A dedicated MatLab application has been written in 
order to implement the algorithm from above for 
studying the interference. The main steps of the 
application are the following: 
• The superior limit of u parameter, umax, is determined 

after numerically solving the equation (3), by 
applying the General method [7]. 

• The discretization points of ABsegment are 
generated, according to (17). 

• The worm tooth flank, reciprocal enwrapped to star 
wheel tooth is determined in discrete form (14) with 
the ensemble of equations (7) and (12). 

• The cloud of points describing the worm helical 
flank is built by applying to the vector (14) the 
motion (15). 

• All points from the cloud are checked for satisfying 
the condition (18), with the restriction (19), for each 

discretization point of ABsegment; once such a 

point is found, its co-ordinates are recorded in the 
solution vector (ξint j , ηint j , ζint j), j = 1, 2, ... 

• The results are exported in numerical form (the 
solution vector), together to a graphical 3-D 
representation of the curve formed by the 
intersection points. 

The values of the other parameters involved in 
solving the addressed numerical application are: 
• Number of points for discretizing the tooth flank 

profile: n = 1000. 
• The maximum value of u parameter, calculated by 

numerically solving (3): umax = 5.8992 mm. 
• The interval of variation for v angular parameter (see 

relation (15)): [ ]0,20/π−∈v . 

• Number of points for discretizing the value of v 
parameter: m = 1000. 

• The maximum admissible error to be considered for 
relation (18): eps = 5·10-3. 

The results obtained after running the MatLab 
application are below presented in Tables 1, 2 and in 
Figs. 3‒5. Table 1 includes samples of the co-ordinates 
for the points that give the worm flank profile, in axial 
section. This profile is depicted, together with the star 
wheel tooth profile, in Fig. 3.  

The co-ordinates of the intersection points between 
the helical surface of the worm flank and the cylindrical 
surface of the star wheel tooth flank (the interference 
points) are sampled in Table 2 – only left flanks case. 
Fig. 4 presents the 3-D curve obtained by joining the 
interference points.  

In Fig. 5 one can see the part of the star wheel tooth 
flank being affected by the interference phenomenon, in 
the left flank case also. 

 

 
Fig. 3. The reciprocal enwrapped profiles: worm axial profile 

versus star wheel tooth profile. 

Star wheel 
tooth profile 

Worm axial 
profile 
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Table 2 
Interference points (co-ordinates) 

 

Crt. 
no. 

ξi 

[mm] 
ηi  

[mm] 
ζi 

[mm] 

1 30.4873 −0.2759 4.8287 

2 30.4881 −0.2762 4.8239 

3 30.4941 −0.2798 4.8200 

4 30.5053 −0.2868 4.8168 

5 30.5114 −0.2905 4.8128 

6 30.5121 −0.2907 4.8080 

7 30.5076 −0.2876 4.8024 

8 30.5084 −0.2878 4.7976 

9 30.5144 −0.2915 4.7937 

10 30.5204 −0.2951 4.7897 

......................... 
486 31.2904 −0.7398 2.5344 

487 31.2854 −0.7364 2.5290 

488 31.2858 −0.7367 2.5241 

489 31.2862 −0.7369 2.5192 

490 31.2866 −0.7372 2.5143 

491 31.2870 −0.7374 2.5094 

492 31.2928 −0.7413 2.5049 

493 31.2986 −0.7452 2.5004 

494 31.2990 −0.7454 2.4955 

495 31.2940 −0.7420 2.4901 

......................... 
971 30.2210 −0.1222 0.0424 

972 30.2055 −0.1132 0.0377 

973 30.1900 −0.1043 0.0330 

974 30.1796 −0.0985 0.0283 

975 30.1590 −0.0865 0.0236 

976 30.1436 −0.0777 0.0189 

977 30.1230 −0.0659 0.0141 

978 30.1024 −0.0541 0.0094 

979 30.0716 −0.0363 0.0047 

980 30.0152 −0.0039 0.0000 

 

 
Fig. 4. The interference point’s locus. 

 
 

Fig. 5. The zone of the tooth flank affected by interference, 
referred to the entire flank length. 

 
 

In Fig. 5 the zone of the flank affected by interference 
is represented thicker. By refering it to entire tooth flank 
length, it represents about 24.88 %. 

By using the same Matlab application, we further 
present an analysis of the impact brought by gear 
elements geometry and dimensions onto the importance 
of the interference phenomenon. 

In the mentioned purpose, the following parameters 
have been successively modified, one at a time (the rest 
of them remaining at their standard values), and the 
effect onto the interference has been assessed: 
• Angle of wheel tooth flank: ε = 20º, 30º, 40º. 
• Worm internal radius: r i = 20, 30, 40 mm. 
• Worm helical parameter: p = 5/π, 7/π, 9/π mm. 

The effect of modifying the tooth flank angle can be 
noticed in Fig. 6. When ε = 20º, the fraction of the flank 
length affected by interference increases to 29.91 %, 
while for ε = 40º, the same fraction diminishes to  
19.21 % (see also Fig. 7,a). 

The effect of worm internal radius variation is 
presented in Fig. 7,b. For r i = 20 mm, the fraction of the 
flank length affected by interference is about 30.49 %, 
and for r i = 40 mm, the corresponding fraction is smaller 
– 21.96 %. 

The effect of changing the worm helical parameter 
can be observed in Fig. 7,c. If p = 5/π mm, then the 
fraction of the flank length affected by interference is 
about 35.1 %, while if p = 7/π mm, then the fraction 
increase even more, to 44.31 %. 

For concluding this analysis, we can state that the 
values of the specific parameters, adopted at the design 
stage for the gear formed by a star wheel and a 
cylindrical worm, have a major impact from the 
interference phenomenon point of view. 
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a b c 
Fig. 6. The impact of the tooth flank angle onto the interference phenomenon extension: a – ε = 20º, b – ε = 30º, c – ε = 40º. 
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Fig. 7. The dimension of the interference phenomenon depending on: a – Flank angle, b – Worm radius, c – Helical parameter. 
 

5. CONCLUSIONS 
 

This paper presents a solution to study the 
interference at the assemblage of the cylindrical worm - 
star wheel gear. The solution lies on the theorem of the 
plane generating trajectories family and enables to find 
both the worm axial profile, reciprocal enwrapped to the 
star wheel tooth profile, and the points of intersection 
between the two profiles, in planes normal to star wheel 
axis. The numerical implementation of the method in a 
concrete case has enabled us to prove the method 
feasibility. 

The analysis of the dependence between the 
constructive parameters of the addressed gear and the 
magnitude of the interference phenomenon has shown an 
important potential to improve the gear functioning if 
properly designed. Hereby, beyond the obvious solution 
of reducing the star wheel thickness, a smaller tooth 
flank angle, and a higher diameter of the worm combined 
with a smaller value of the worm helical parameter lead 
to a significant diminishing of the interference 
occurrence.  

Here, a triangular profile of the star wheel tooth has 
been considered, but other profile shapes should be 

further developed in order to improve even more this 
type of transmission. 
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