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Abstract: This paper addresses the problem of imitation learning for physical robots. Getting inspiration 
from the way humans learn new skills by imitation, we adopt virtual robot prototype as behavior 
identification guide for physical robot. Virtual prototyping technique provides a virtual robot homonym. 
Virtual robot prototype’ experience will greatly improve thanks to an always-changing scenario. 
Combined with a dataset transferring algorithm, we obtain an imitation learning strategy with good 
performance under the physical constraints. The online dataset transferring, of the mini-segments of 
virtual trajectories, make opportune the guidance of the physical robot. The virtual trajectories must be 
able to make early predictions of the physical robot's intentions. Developing a new training policy is the 
scope of this study. We believe that this new approach outperforms previous approaches on challenging 
imitation learning problems.  
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1.  INTRODUCTION 1 
 

Imitation learning techniques have proven very useful 
in practice in a variety of applications including robotics. 
Imitation learning has been shown to be successful in 
solving many challenging real-world problems as robot 
guidance by imitation.  

Imitation learning covers methods by which a robot 
learns new skills through training. Learning by imitation 
supposes control strategies for each degrees of freedom 
of robot that interact with a complex and variable 
environments, according a demonstrator model. 

The present work addresses both challenges in 
investigating and comparing methods by which imitation 
technique is used to learn the dynamics of demonstrated 
movements, and, hence, provides the robots with a 
generic and adaptive model of control. 

The demonstrations of good behaviour of the virtual 
robot prototype are perceived as prediction problems. 
Imitation learning such as sequential prediction 
problems, takes inspiration from the way humans learn 
new skills by imitation to develop methods by which new 
tasks can be transmitted to a imitator, where future 
actions depend on previous predictions actions.  

The proposed solution will make robot training more 
challenging and entertaining for engineers by providing 
two robot agents‒the physical robot agent and virtual 
robot prototype agent ‒ against each other ‒ in a certain 
scenarios. 

                                                           
* Corresponding author: Str. Mihai Viteazu nr. 5, Corp V, et III 
Cod. 500174, Jud. Braşov, Romania,  
Tel.: +40 268 418 836; 
E-mail addresses: fratu@unitbv.ro (A. Fratu). 

We present a description of the theoretical aspects to 
learn the controller of the physical robot using a virtual 
prototype robot model.  

In our system imitation learning is made in two steps: 
first step by training a virtual robot prototype obtained as 
original training policy, second step by dataset 
transferring from virtual environment to physical 
environment where physical robot must reproduce such 
demonstrations and can follow an optimal path. The 
control system can adapt the strategy in real time to 
avoid obstacles in the work space. 

Our approach, based on on-line imitation of the 
motion of the virtual prototype, is an alternative to the 
classical methods (e.g. vision guided trajectory imitation) 
where standard control methods fail. 

The rest of this paper is organized as follows: first we 
discuss issues related work in literature is presented in 
Sec. 2; then, in Sec. 3, related the iteratively training 
policy. The proposed solution is introduced and discussed 
in Sec. 4 and Sec. 5 while Sec. 6 provides details about to 
prediction and optimization of dataset transferring 
strategy. Finally, Sec. 7 concludes the paper. 
 
2.  RELATED WORKS 
 

In the previous works the imitation process was based 
on human motion primitives skilled through a motion 
recognition and control approach, using some controller 
and predictor modules. We now briefly review previous 
approaches and their guarantees. 

Kadone and Nakamura [1] introduced an incremental 
algorithm to learn human motion primitives. Their model 
was able to automatically segment path memorize, and 
recognize demonstrated motions, using associative neural 
networks. 



132 A. Fratu and M. Fratu / Proceedings in Manufacturing Systems, Vol. 11, Iss. 3, 2016 / 131−136  

 

Another study based on plan recognition by 
Pardowitz et al. [2] states that human behavior follows 
stereotypical patterns, which can be expressed as 
preconditions and effects. However, these constraints 
must be specified in advance, which is a problem when 
trying to use them in different domains. 

In the advanced works, algorithms were proposed for 
incremental and autonomous acquisition and learning of 
human motions from continuous demonstrations (Kulic 
et al. [3]). However, in the proposed model, abstraction 
was based on perceptual similarity, and also the sequence 
of symbols was given to the agent by communication. 
Like previous works, the obtained symbols were 
categorized based on perceptual information. 

From a robotics viewpoint, Takano et al. [4] proposed 
an approach for encoding observed trajectories based on 
hidden Markov model as mimesis models in order to 
segment and generate humanoid robot motions through 
imitation. They also provide an algorithm for motion 
generation. 

The closest works to ours is proposed by Takano et 
al.[4] and Ramirez-Amaro et al. [5]. Takano et al. 
introduced a bio-inspired model to acquire abstract 
relational concepts from imitation, using reinforcement 
learning. Ramirez-Amaro et al., introduced a method that 
allows to transferring skills to humanoid robots by 
extracting semantic representations from observations of 
human activities. However, in all previous works, 
abstraction and symbolization are based on similarity in 
perceptual space, and the proposed approaches cannot 
deal with abstract concepts. A few good surveys of the 
imitation learning can be found in [6‒9]. 

In our previous study [10, 11], we demonstrated this 
hierarchical approach using an unsupervised state-of-the 
art learning algorithm based on independent virtual 
subspace analysis to extract spatial-temporal features 
from virtual environment. The results suggested the 
accuracy of correctly identifying virtual robot prototype 
behaviors exceeded our expectants which is very good 
compared with others approaches. Another advantage of 
our hierarchical approach is that time required for the 
training process is reduced. 
 
3.  ITERATIVELY IMITATION LEARNING USING 

BINARY-VALUED DATA 
 

Some recent approaches give strong performance 
guarantees by training the policy iteratively. However, it 
is important to note that these guarantees depend on how 
well the policy we found can imitate the demonstrator by 
transferring the training data. The standard approach is to 
use supervised learning algorithms and minimize the 
prototype deficiency with respect to a prediction. 
However, this method ignores the difference between 
distributions of states induced by executing the 
demonstrator’s and learner’s policy, thus has a deficiency 
in the task horizon T. 

A recent approach called Dataset Aggregation 
(DAgger) [12] yields a loss linear in the task horizon T 
by iteratively training the policy in states induced by all 
previously learned policies. Its theoretical guarantees are 
relative to performance of the policy that best mimics the 
demonstrator on the training data. 

DAgger algorithm proceeds by collecting a dataset at 
each iteration under the current policy and trains the next 
policy under the aggregate of all collected datasets. The 
intuition behind this algorithm is that over the iterations, 
we are building up the set of inputs that the learned 
policy is likely to encounter during its execution based 
on previous experience (training iterations). This 
algorithm can be interpreted as a Follow-The-Leader 
algorithm [13] where during each iteration we decide the 
best policy between all trajectories of the virtual 
prototype which minimizes the observed loss in training 
problem. Similar the DAgger algorithm we propose a 
training algorithm witch transfer the sequence of data ‒ 
as dataset ‒ from virtual environment to physical space. 
With each capturing dataset from virtual environment, 
we predict a sequence of actions of the physical robot. 

 
4.  THE PROPOSED SOLUTION FOR JOINT DA-

TASET INFORMATION  
 

In this section we are going to describe our solution. 
We first briefly review concepts of online learning and 
imitation algorithm that will be used for this analysis.  

We present a description of the theoretical aspects of 
the physical robot motion guidance using a virtual robot 
prototype, which is the problem addressed in this study. 
This is an interactive algorithm in which the imitator 
agent receives dataset information from the demonstrator. 
So, it can form concepts based on functional 
characteristics of demonstrated behaviours. This requires 
the analysis of stereotypical and pre-planned motion of 
the virtual prototype in order to acquire the desired task 
[10].  

Therefore, the major advantage of these approaches is 
their ability to analyze the details of virtual prototype 
movements. At rest, this analysis can be performed 
without using very sophisticated perception systems such 
motion capturing systems, to identify the position of 
joints [11]. Another advantage of this method is the 
ability to generalize the learned models to new situations, 
mainly since they depend on the correct identification of 
robot positions, which are difficult to extract from 3D 
videos. 

To design our model we took inspiration from both 
algorithms "follow the leader" and "datasets 
aggregation". The virtual robot prototype, which has 
different behaviours, was determined a priori. To address 
this issue, we believe that virtual prototype and artificial 
intelligence techniques can be exploited in order to 
provide a better user experience.  

By using these techniques, it is possible to model 
every physical robot as an independent agent that may be 
able to randomly choose its own path while coordinating 
with others moving objects, to keep path free. 

The idea is to use virtual path as a reference trajectory 
for physical robot. This approach also estimates more 
accurately the response of each action through a 
predictive motion virtual model. Pre-computed 
trajectories come from the virtual prototype and are used 
to guide the physical robot. The virtual robot prototype 
needs to be executed offline to classify paths of motion 
for pre-computed trajectories sets. 
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The segmentation of the virtual path, required by 
transferring process, must be done in real time. 
Therefore, in order to solve the issues described above 
and to demonstrate that our system does not depend on a 
complex perception system, we propose the use of the 
simplest computer vision technique to optimizing the 
robot behavioral. Users interact with the simulation 
environment through the visualization.  

This includes, but not limited to computer screen. The 
visualization provides an interface to develop interactive 
implementations based on simulated behaviour of the 
model. In our work we assume that learning of the 
deterministic part for description motion dynamics 
should be sufficient to design the corresponding robot 
control. 

We particularly refer to the ability of the system to 
react to changes in the environment that are reflected by 
motion parameters, such as a desired target position and 
motion duration. Therefore, the system is able to manage 
with uncertainties in the position of a manipulated object, 
duration of motion, and structure limitation (e.g. joint 
velocity and torque limits). It is easy to recuperate 
kinematic information from virtual robot motion, using 
for example motion capture.  

We focus on creating a virtual prototype model from 
experimental data obtained from the physical robot 
model. A solution to the above problem is to construct a 
virtual robot prototype, VRP (shorthand for "virtual robot 
prototype") and to transfer the virtual trajectory by 
interacting with the physical robot physical robot (PhR) 
model.  

The VRP as virtual homonym of the PhR can interact 
in real time with the PhR and cooperate together to 
achieve shared task, such as are cooperative entities, in 
charge of accomplishing tasks or to collision avoid when 
they are trying to fulfil tasks quested. In standard 
implementations, VRP is travelling between pre-defined 
obstacles on a virtual map.  

Due to technical and computational constraints, the 
designers may be practically sure about not having 
obstacles collision events. Moreover, this original 
approach is not very computational intensive and allows 
for a better scalability. Nevertheless, VRP moving 
between obstacles will benefit from changing paths when 
appears obstacles.  

The free paths can be easily guessed by experienced 
scenery and free routes in the work space will be 
discovered eventually. Optimization of the physical robot 
behaviour is performed in the low dimensional virtual 
space by using the virtual robot prototype. 

In the virtual environment one simulate even the 
intersecting of the virtual robot and its environment. The 
intersecting of two virtual objects is possible in the 
virtual world, where the virtual objects can be even 
intersected and there is no risk to be destroyed. By 
combining off-line and on-line programming techniques, 
our method consists in using a programming platform on 
which there is carried out the virtual prototype of the real 
robotic arm to be programmed and the real working 
space wherein it is intended to work; in the robot 
program there is written a source code intended to 
summarize the motion paths of the virtual robotic arm 
prototype; the numerical values of the prototype 

articulation variables are sent to the data register of a port 
of the information system which, via a numerical 
interface, are on-line transferred into the data registers of 
the controllers of the driving shafts of the real robotic 
arm; finally, there are obtained tracking structures due to 
which the moving paths of the virtual robotic arm 
articulations are tracked by the physical robotic arm 
articulations, thereby generating motion within the 
physical working space. 

In our training strategy based on the dataset 
transferring from virtual environment to physical space, 
we have to sequentially select a subset of data for each 
instance of transferring process, according to specified 
accuracy and cost.  

To implement a real-time training strategy scheme, 
three major areas need to be investigated such robot and 
environment modelling more realistic, dataset 
transferring and selecting training policy for imitation 
learning.  
 
5.  PHYSICAL ROBOT TRAINING BASED ON 

VIRTUAL MODEL 
 

We present a description of the theoretical aspects of 
the physical robot training using a virtual model. The 
advantages of such approach, as an alternative to vision 
guided trajectory imitation, are on-line adaptation to the 
motion of the virtual prototype.  

A solution to the above problem is to construct a 
virtual prototype model and to transfer the virtual 
trajectory by interacting with the physical robot model. 

Give a physical robotic agent that move free in work 
space while being controlled using her virtual homonym. 
Robots are designed to execute tasks within a defined 
environment. 

The physical entity required to receive real-time 
digital data while being guided by her virtual prototype 
homonym.  

The physical robot should generate motions based on 
the current task of its virtual homonym, while 
considering information related to physical environment. 
The reference datasets are obtained using a motion 
capture channel taking into account the joint motion 
range. 

The easiest way to generate the spatial relations 
explicitly is the interactively programming of the 
behavior of the virtual prototype in her virtual 
environment, in order to specify suitable positions.  

This kind of specification provides an easy to use 
interactive graphical tool to define any kind of robot 
path; the user has to deal only with a limited and 
manageable amount of spatial information in a very 
comfortable manner. 

The applicable robot tasks are designed and the 
desired pathways are programmed off-line and stored in 
the buffer modules. 

We assume to use the virtual robot prototypes and the 
motion capture systems to obtain the reference motion 
data, which typically consist of a set of trajectories in the 
Cartesian space. 

The dataset is obtained using a motion capture 
channel taking into account the joint motion range. Due 
to the joint limits and the difference between the 
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kinematics of the virtual robot and real physical robot, 
the joint angle data are pre-processed. 

We assume that both virtual and physical robots are 
on the scene at the same time and estimate the correct 
arms position and orientation. We then compute the 
inverse kinematics for new posture to obtain the cleaned 
joint angles and retain the difference from original joint 
angles. 

At each frame during control, we add the difference 
to the original data to obtain the cleaned reference joint 
angles. This correction is extremely simple and our 
controller does not require supplementary cleanup. 

A distributed low-level actuating system handles 
robot attitude and power monitoring. The main 
processing unit is currently implemented on a Personal 
Computer (PC).  

On programming platform, a robot program is carried 
out off-line, and one sends into the data registers of a port 
of the hardware structure, the numerical values of the 
joint variables of the virtual prototype of the robotic arm 
and displays on a graphical user interface the evolution 
of the virtual prototype during the carrying out of the 
robotic task. The virtual joint dataset, from the data 
registers of the port of the hardware structure of the 
programming platform are transferred into the data 
registers of the numerical comparators of the controllers. 
These datasets are reference inputs of the pursue loops, 
resulting a system control.  

The PC runs the operating system with the timeliness 
support necessary for time-stamping, periodic 
transmissions and task temporal synchronization 
provided by a specially developed user-level real time 
scheduler, the Process Manager. 

This approach provides sufficient timeliness support 
for soft real-time applications, such as multiple robot 
coordination, and allows profiting from the better 
development support provided by general purpose 
operating systems. 

This approach also estimates the response of each 
action through a predictive motion virtual model to more 
accurately predict theirs consequences. Our approach 
represents a technique for generating animated 
navigation offline, by pre-computing layered trajectories 
for a physical robot. Pre-computed trajectories sets come 
from the virtual prototype and are used to autonomously 
guide the robot.  

Designing a virtual model would be an option; 
however, the behavior of the robots is very difficult to 
model. Moreover, the use of system knowledge is 
contrary to our research aim. Therefore we focus on 
creating a virtual prototype model from experimental 
data obtained from the physical robot model. 

Users interact with the simulation environment 
through the visualization. This includes, but not limited 
to, computer screen. Optimization of the real robots 
behavior is performed in the low dimensional virtual 
space using the virtual robot prototypes.  

The visualization provides an interface to develop 
interactive implementations based on simulated behavior 
of the model.  

In our work we assume that learning of the 
deterministic part for description motion dynamics 

should be sufficient to design the corresponding robot 
control.  

We particularly refer to the ability of the system to 
react to changes in the environment that are reflected by 
motion parameters, such as a desired target position and 
motion duration. Therefore, the system is able to manage 
with uncertainties in the position of a manipulated object, 
duration of motion, and structure limitation (e.g. joint 
velocity and torque limits) [3].The proposed method 
aims at adapting to spatial and temporal perturbations 
which are externally-generated. This aspect will be 
investigated in our future works. 

It is easy to recuperate kinematic information from 
virtual robot motion using for example motion capture. 
In this paper, we propose a predictive control structure 
for physical robots that uses capture data from their 
virtual prototypes and transfer them to track the motion 
in the real space. We apply the controller to tracking 
motion capture clip to preserve the original behavior of 
virtual robot.  

First, a motion capture system transforms Cartesian 
position of virtual robot structure to virtual joint angles 
based on kinematic model. Then, the joint angles are 
converted in binary words and transferred to real robot. 
We employ the control loops structure to establish 
relationships between the virtual and real robot control 
systems. We present results demonstrating that the 
proposed approach allows a real robot to learn how to 
move based exclusively on virtual robot motion capture, 
viewed as predictive control strategy. 
 
6.  IMITATION LEARNING BY DATASET 

TRANSFERRING 
 

We consider a reduction of imitation learning to 
online dataset transferring where we treat mini-segments 
of virtual trajectories under a single policy as a single 
online-learning example. Our goal is to train the physical 
robot to do their task based on current virtual image 
features as input, according to the possible scenario.  

Our expert is a near-optimal planning algorithm that 
has full access to the virtual states and transfer dataset 
from the virtual demonstrations to physical robot. A 
transfer action consists of binary variables indicating 
which subset of virtual path should be reproduced by 
physical robot joints, at each transferring interval.  

However, there are many tasks that are described in 
terms of possibly conflicting objectives, e.g., a motion 
control system should minimize latency and maximize 
the possible quantity of data that can be transmitted 
between virtual and physical collaborative agents. 

We find an optimal control strategy that uses the 
virtual model of the robot system to obtain an optimal 
control sequence by minimizing an objective function. At 
each transferring interval, the virtual model is used to 
predict the behavior of the physical robot system over a 
prediction horizon.  

Based on these predictions, an objective function is 
minimized with respect to the future sequence of inputs 
for each transferring interval.  

Although prediction and optimization are performed 
over a future horizon; only the values of the inputs for 
the current transferring interval are used. The same 
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procedure is repeated at the next transferring time. We 
begin by introducing notation relevant to our situation.  
 
6.1. Time Distribution Multiple Access (TDMA) 

According [12] one consider the state s, and we 
denote C(s, a) the expected immediate cost of performing 
action a in state s for the task we are considering. One 
denotes: 
 

 )]([)( sCEsC tda π≈π π
= , (1) 

 
the expected immediate cost of policy π in state the s. 
Also we assume C is bounded in [0; 1].  

One denotes by space Π the class of policies the robot 
agent imitator is considering and refers to T the imitation 
task horizon.  

For any policy π, one let tdπ  indicate the distribution 

of states at time t if the robot learner executed policy π 
from time step 1 to t − 1. In addition, one represents the 
average distribution of states if a robot agent follows a 
policy π for T steps:  
 

 ∑ = ππ = T

t
tdTd

1
)/1( . (2) 

 
The total cost of executing policy π for T-steps, is 

denoted by cost function: 
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1
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In imitation learning, we observe virtual expert’ 

demonstrations and investigate to bound J(π) for any cost 
function based on how well policy π mimics the virtual 
expert’s policy π*. 

Indicate l ‒ the observed loss function ‒ one 
minimizes the cost C.  We are interested in optimizing 
the learner’s ability to predict the actions using a virtual 
robot prototype expert. A physical robot agent follows a 
policy π̂ . Our target is to find a policy π̂  which 
minimizes the observed loss, under its induced 
distribution of states, i.e.:  
 
 [ ]),(minargˆ π=π

Π∈π
≈ π

slE ds . (4) 

 
As robot dynamics is assumed both unknown and 

complex, we cannot compute the average distribution of 
states, dπ and can only sample it by executing policy π in 
the robotic system. The interaction between policy and 
the resulting distribution makes optimization 
complicated.  
 
6.2. Reduction to Online Imitation  

Let,  
 

 [ ]))(,,()( sslEl
i

dsi
∗

≈ ππ=π
π

  (5) 

 
The expression li(π) denote the expected substitute 

virtual robot loss of executing policy π in states 
distributed according to dπi In an online imitation 
learning setting, in iteration i an algorithm executes 
policy πi and observes loss l i(πi). It then provides a 

different policy πi+1 in the next iteration and observes 
loss l i+1(πi+1). A success dataset transferring policy 
guarantees that, in N transferring iterations.  
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Assuming a strongly convex loss function, our 

transferring-data algorithm admits a success policy. In 
each transfer iteration admits the policy that works best 
so far:  

 )(minarg
1

1 π=π ∑
=

+

i

j
ji l . (7) 

 
At iteration i we choose the policy that has the 

minimum demonstrator loss on all previous transferred 
data. Thus, it can be interpreted as virtual trajectories 
transferred policy is treated as online-programming 
example. However, it can be hard to find a good policy 
that has a low training error, since the demonstrator’s 
policy may resides in a space that is not imitable in the 
learner’s policy space [14].  

When the optimal action is hard to achieve, we 
propose to train gradually the imitator with easy-to-learn 
actions. A virtual demonstrator trains the physical 
imitator iteratively in a fashion similar to DAgger 
algorithm.  

The training becomes robust by showing more 
demonstrator actions as the imitator makes progress. 
Intuitively, this allows the learner to move towards a 
better action without much effort. Thus our algorithm 
achieves the best action gradually instead of aiming at an 
impractical goal from the beginning 
 
6.3. Limitation of the Imitation  

A virtual demonstrator can be firm to imitate in two 
ways. First, the learning policy space is far from the 
space that the oracle policy lies in, meaning that the 
learner only has limited learning ability.  

It can be hard to find a good policy that has a low 
training error, since the demonstrator’s policy may 
resides in a space that is not imitable in the imitator’s 
policy space. For instance, the task loss function in the 
imitator’s space can be very different from the 
demonstrator’ loss [15, 16]. 

Second, the environment information known by the 
virtual demonstrator cannot be sufficiently inferred from 
the state, meaning that the imitator does not have access 
to good learning resources.  

In the online learning scenery, a too-good 
demonstrator may result in adversarial varying loss 
functions over iterations from the learner’s perspective. 
This may cause brutal changes during policy updating. 
These difficulties result in a substantial gap between the 
virtual demonstrator’s performance and the best 
performance achievable in the policy space Π. 
 
7.  CONCLUSIONS  
 

Virtual prototyping is an aspect of information 
technology that permits analysts to examine on a 
computer monitor the behavior of the physical robots 
using her virtual prototype. 
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By virtual prototyping one uses a virtual model in 
lieu of a physical robot model, for test and evaluation of 
specific characteristics of a candidate design.  

There is a trend to use of virtual prototypes during the 
design analysis process. A virtual prototype is a digital 
model with a degree of functional realism comparable to 
a physical model. The value of virtual prototyping is 
rapidly being recognized for a wide range of engineering 
applications. 

The advantages of such approach, as an alternative to 
the classical methods, are on-line adaptation to the 
motion of the virtual prototype obtained as initial training 
model. These types of trajectory level techniques are 
very useful for extracting relevant information from 
activities, as well as for transferring these models to 
artificial systems. Transferring the models acquired from 
virtual demonstrations to physical robots is a challenging 
task for the building of the adaptive and autonomous 
robots, mainly because it requires the generation of task-
specific that should be naturally in a physical 
environment.  

Our major contribution is an online dataset 
transferring algorithm for imitation learning tasks, where 
the available space policy is not adequate for imitating of 
the demonstrator. 
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