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Abstract: This paper addresses the problemnoitation learningfor physical robots. Getting inspiration
from the way humans learn new skills by imitatiowe adopt virtual robot prototype as behavior
identification guide for physical roboYirtual prototyping techniquerovides a virtual robot homonym.
Virtual robot prototype’ experience will greatly prove thanks to an always-changing scenario.
Combined with a dataset transferring algorithm, watadn an imitation learning strategy with good
performance under the physical constraints. Thenentataset transferring, of the mini-segments of
virtual trajectories, make opportune the guidanddhe physical robot.The virtual trajectories must be
able to make early predictions of thaysical robds intentions Developing a new training policy is the
scope of this study. We believe that this new ambprautperforms previous approaches on challenging
imitation learning problems.

Key words: virtual prototyping, virtual trajectory, segmenitat of motion data, learning by imitation,
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1. INTRODUCTION We present a description of the theoretical asptects
learn the controller of the physical robot usingirdual
prototype robot model.

In our system imitation learning is made in twopste
first step by training a virtual robot prototypetained as
original training policy, second step by dataset
transferring from virtual environment to physical
environment where physical robot must reproducéh suc
demonstrations and can follow an optimal path. The
control system can adapt the strategy in real ttme
avoid obstacles in the work space.

Our approach, based on on-line imitation of the
. A i L ”?nouon of the virtual prototype, is an alternatiwethe
Investigating and comparing methods_by which inutat classical methods (e.g. vision guided trajectoridtion)
technique is used to learn the d_ynam|c5 of denMr where standard control methods fail.
movements, and,_ hence, provides the robots with a The rest of this paper is organized as followst five
generic and adaptlv_e model of control. . _ discuss issues related work in literature is preegkm

The demonstrations of good behawo_ur.of the V|rtualSeC 2: then, in Sec. 3, related teratively training
robot prototype are perceived as prediction problem policy. The proposed solution is introduced and discussed

Imitglltion 'e‘l;““"?g §uc_h fas Sﬁquentiarl] predlcltlonm Sec. 4 and Sec. 5 while Sec. 6 provides dethitait to
pro elg:ls,;a.es. |n.sp|rat|ccj)n rlom t ehwgybumﬁi:::vea prediction and optimizationof dataset transferring
new skills by imitation to develop methods by w strategy. Finally, Sec. 7 concludes the paper.

tasks can be transmitted to a imitator, where &utur
actions depend on previous predictions actions.

The proposed solution will make robot training more
challenging and entertaining for engineers by oy
two robot agentghe physical robot agent and virtual
robot prototype agent against each otherin a certain

Imitation learning techniques have proven very uisef
in practice in a variety of applications includirgpotics.
Imitation learning has been shown to be succesaful
solving many challenging real-world problems asotob
guidance by imitation.

Imitation learning covers methods by which a robot
learns new skills through training. Learning by tation
supposes control strategies for each degrees eddra
of robot that interact with a complex and variable
environments, according a demonstrator model.

The present work addresses both challenges

2. RELATED WORKS

In the previous works the imitation process wastas
on human motion primitives skilled through a motion
recognition and control approach, using some cdatro

scenarios. and predictor modules. We now briefly review prexo
approaches and their guarantees.
Kadone and Nakamura [1] introduced an incremental
B . A v algorithm to learn human motion primitives. Theioae!
oo 4t”?u39t85‘;§frh'g;n:'m;eazu nr. 5, Corp V, etlil was able to automatically segment path memorizd, an
Tel.: +40 268 418 836 recognize demonstrated motions, using associaéueah

E-mail addresses$ratu@unitbv.ro(A. Fratu). networks.
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Another study based on plan recognition by  DAgger algorithm proceeds by collecting a dataset a
Pardowitz et al. [2] states that human behaviolofed each iteration under the current policy and tréimesnext
stereotypical patterns, which can be expressed apolicy under the aggregate of all collected datasthe
preconditions and effects. However, these cond#ain intuition behind this algorithm is that over theritions,
must be specified in advance, which is a problererwh we are building up the set of inputs that the ledrn
trying to use them in different domains. policy is likely to encounter during its executibased

In the advanced works, algorithms were proposed folon previous experience (training iterations). This
incremental and autonomous acquisition and learofing algorithm can be interpreted as a Follow-The-Leader
human motions from continuous demonstrations (Kulicalgorithm [13] where during each iteration we decitle
et al. [3]). However, in the proposed model, alw$toa  pest policy between all trajectories of the virtual
was based on perceptual similarity, and also thees&ce  prototype which minimizes the observed loss inniraj
of symbols was given to the agent by communication.problem. Similar the DAgger algorithm we propose a
Like previous works, the obtained symbols were training algorithm witch transfer the sequence afad-
categorized based on perceptual information. as dataset from virtual environment to physical space.

From a robotics viewpoint, Takano et al. [4] progs  \jith each capturing dataset from virtual environtnen

an approach for encoding observed trajectoriescbase e predict a sequence of actions of the physidzsto
hidden Markov model as mimesis models in order to

segment and generate humanoid robot motions through
imitation. They also provide an algorithm for matio 4. THE PROPOSED SOLUTION FOR JOINT DA-

generation. TASET INFORMATION

The closest works to ours is proposed by Takano et |n this section we are going to describe our sofuti
al.[4] and Ramirez-Amaro et al. [5]. Takano et al. we first briefly review concepts of online learniagd
introduced a bio-inspired model to acquire abstractmitation algorithm that will be used for this aysis.
relatipnal concepts from imitatipn, using reinfaremnt We present a description of the theoretical aspefcts
learning. Ramirez-Amaro et al., introduced a metthed 0 physical robot motion guidance using a virtwdot

aIIows_to transfe_rring skills to humanoid robots by prototype, which is the problem addressed in thilys
extracting semantic representations from obsematiaf This is an interactive algorithm in which the inita

hltj)man .act|V|t:jes. I—Lm;yevt_er, In "’gl p(rjewous_ };\{o_rks, agent receives dataset information from the dematast
abstraction and symbolization are based on sitylami g, can  form concepts based on functional

gerﬁep_ttl;]al sptacet, and thte p;‘ofposed a(?proaChiﬁt?an%aracteristics of demonstrated behaviours. Tljgires
eal with abstract concepts. 7 Tew good surveysnet o analysis of stereotypical and pre-planned motib

imitation learning can be found in{8]. : . . :
In our previous study [10, 11], we demonstrated thi 'Egce)]wrtual prototype in order to acquire the desitask

hierarchical approach using an unsupervised sfetieco Therefore, the major advantage of these approdshes

art learning algo_nthm based on !ndependent V'rtualtheir ability to analyze the details of virtual pwtype
subspace analysis to extract spatial-temporal rfeatu . .
movements. At rest, this analysis can be performed

;rggr;gtuc? c?)rr]rveIZ:ct)Inni]gggtif;i:e \;ﬁfuualltlsmsblé)gtgeste(l thewithout using very sophisticated perception systeoth
s y 9 S potyp motion capturing systems, to identify the positioh
behaviorsexceeded our expectants which is very good

compared with others approaches. Another advarifge joints [11]. Another advantage of this method i th
pe . PprC | . 9 ability to generalize the learned models to newasibns,
our hierarchical approach is that time required tfoe

training process is reduced mainly since they depend on the correct identificabf
9p ' robot positions, which are difficult to extract mo3D

videos.
3. ITERATIVELY IMITATION LEARNING USING To design our model we took inspiration from both
BINARY-VALUED DATA algorithms  "follow the leader" and ‘"datasets

Some recent approaches give strong performanc@dgregation”. Thevirtual robot prototype,which has
guarantees by training the policy iteratively. Howe it ~ different behaviours, was determined a priod.address
is important to note that these guarantees depermbey  this issue, we believe that virtual prototype artificial
well the policy we found can imitate the demonstraty ~ Intelligence techniques can be exploited in order t
transferring the training data. The standard apgramto ~ Provide a better user experience. _
use supervised learning algorithms and minimize the BY using these techniques, it is possible to model
prototype deficiency with respect to a prediction. €very physical robot as an independent agent tagthe
However, this method ignores the difference betweerfble to randomly choose its own path while cooriitiga
distributions of states induced by executing theWith others moving objects, to keep path free. _
demonstrator’s and learner’s policy, thus has &igeicy The idea is to use virtual path as a referencedtajy
in the task horizoff. for physical robot. This approach also estimatesemo
A recent approach called Dataset Aggregationdccurately the response of each action through a
(DAgger) [12] yields a loss linear in the task zon T pre_dlct|v_e motion V|rtual_ model. Pre-computed
by iteratively training the policy in states inddcey all  trajectories come from the virtual prototype ane ased
previously learned policies. Its theoretical guseas are  t0 guide the physical robot. The virtual robot ptgpe
relative to performance of the policy that best imaithe ~ Needs to be executaffline to classify paths of motion
demonstrator on the training data. for pre-computed trajectories sets.



A. Fratu and M. Fratu / Proceedings in ManufactgriSystems, Vol. 11, Iss. 3, 2016 / 4336 133

The segmentation of the virtual path, required byarticulation variables are sent to the data regifte port
transferring process, must be done in real time.of the information system which, via a numerical
Therefore, in order to solve the issues descridma&  interface, are on-line transferred into the datasters of
and to demonstrate that our system does not depeiad the controllers of the driving shafts of the reabatic
complex perception system, we propose the use eof tharm; finally, there are obtained tracking structudeie to
simplest computer vision technique to optimizing th which the moving paths of the virtual robotic arm
robot behavioral. Users interact with the simulatio articulations are tracked by the physical roboticn a

environment through the visualization. articulations, thereby generating motion within the
This includes, but not limited to computer screEme physical working space.
visualization provides an interface to develop riattive In our training strategy based on the dataset

implementations based on simulated behaviour of thdransferring from virtual environment to physicalase,
model. In our work we assume that learning of thewe have to sequentially select a subset of datadch
deterministic part for description motion dynamics instance of transferring process, according to ifipdc
should be sufficient to design the correspondingoto accuracy and cost.

control. To implement a real-time training strategy scheme,

We particularly refer to the ability of the systam  three major areas need to be investigated such estib
react to changes in the environment that are tefieby  environment modelling more realistic, dataset
motion parameters, such as a desired target positid  transferring and selecting training policy for iatibn
motion duration. Therefore, the system is able émage learning.
with uncertainties in the position of a manipulatdygect,
duration of motion, and structure limitation (ejgint 5. PHYSICAL ROBOT TRAINING BASED ON
velocity and torque limits). It is easy to recugera VIRTUAL MODEL
kinematic information from virtual robot motion, ing
for example motion capture. We present a description of the theoretical aspafcts

We focus on creating a virtual prototype model from the physical robot training using a virtual modéhe
experimental data obtained from the physical robotadvantages of such approach, as an alternativesitmyv
model. A solution to the above problem is to camgtta ~ 9uided trajectory imitation, are on-line adaptattonthe
virtual robot prototypeyRP (shorthand for "virtual robot motion of the virtual prototype.
prototype") and to transfer the virtual trajectory by A solution to the above prOblem is to construct a
interacting with the physical rob@hysical robot (PhR) Virtual prototype model and to transfer the virtual
model. trajectory by interacting with the physical robobdel.

TheVRP as virtual homonym of the PhR can interact ~ Give a physical robotic agent that move free inkvor
in real time with the PhR and cooperate together tosPace while being controlled using her virtual hogno.
achieve shared task, such as are Cooperativeeenﬁn RObOtS are deSigned to execute tasks within a @@fin
charge of accomplishing tasks or to collision awstiten ~ €nvironment.
they are trying to fulfil tasks quested. In stamar ~ The physical entity required to receive real-time
implementations, VRP is travelling between preqtedi  digital data while being guided by her virtual miype
obstacles on a virtual map. homonym.

Due to technical and computational constraints, the ~The physical robot should generate motions based on
designers may be practically sure about not havinghe current task of its virtual homonym, while
obstacles collision events. Moreover, this original considering information related to physical envirent.
approach is not very Computationa| intensive aho\nesl The reference datasets are obtained USing a motion
for a better scalability. Nevertheless, VRP moving capture channel taking into account the joint mmwtio
between obstacles will benefit from changing pathen  range.
appears obstacles. The easiest way to generate the spatial relations

The free paths can be easily guessed by experience®kplicitly is the interactively programming of the
scenery and free routes in the work space will bebehavior of the virtual prototype in her virtual
discovered eventuallDptimization of the physical robot environment, in order to specify suitable positions
behaviour is performed in the low dimensional \aitu This kind of specification provides an easy to use
space by using the virtual robot prototype. interactive graphical tool to define any kind ofbod

In the virtual environment one simulate even thepath; the user has to deal only with a limited and
intersecting of the virtual robot and its enviromhélhe ~ manageable amount of spatial information in a very
intersecting of two virtual objects is possible fine  comfortable manner.
virtual world, where the virtual objects can be reve The applicable robot tasks are designed and the
intersected and there is no risk to be destroyeyl. B desired pathways are programmed off-line and stored
combining off-line and on-line programming techréqu  the buffer modules.
our method consists in using a programming platform We assume to use the virtual robot prototypes hed t
which there is carried out the virtual prototypetltuf real  motion capture systems to obtain the reference amoti
robotic arm to be programmed and the real workingdata, which typically consist of a set of trajetsrin the
space wherein it is intended to work; in the robotCartesian space.
program there is written a source code intended to The dataset is obtained using a motion capture
summarize the motion paths of the virtual robotima channel taking into account the joint motion ranDae
prototype; the numerical values of the prototypeto the joint limits and the difference between the
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kinematics of the virtual robot and real physicabat, should be sufficient to design the correspondinigoto
the joint angle data are pre-processed. control.

We assume that both virtual and physical robots are We particularly refer to the ability of the systdm
on the scene at the same time and estimate thectorr react to changes in the environment that are tefieby
arms position and orientation. We then compute themotion parameters, such as a desired target positid
inverse kinematics for new posture to obtain treaiced  motion duration. Therefore, the system is able tmage
joint angles and retain the difference from origijuént with uncertainties in the position of a manipulatdgect,
angles. duration of motion, and structure limitation (ejgint

At each frame during control, we add the differencevelocity and torque limits) [3].The proposed method
to the original data to obtain the cleaned refeggjoint  aims at adapting to spatial and temporal pertushati
angles. This correction is extremely simple and ourwhich are externally-generated. This aspect will be
controller does not require supplementary cleanup. investigated in our future works.

A distributed low-level actuating system handles It is easy to recuperate kinematic information from
robot attitude and power monitoring. The main virtual robot motion using for example motion capgtu
processing unit is currently implemented on a Reabko In this paper, we propose a predictive control citme
Computer (PC). for physical robots that uses capture data fronir the

On programming platform, a robot program is carriedvirtual prototypes and transfer them to track thetiom
out off-line, and one sends into the data regisiéesport  in the real space. We apply the controller to tiragk
of the hardware structure, the numerical valueshef  motion capture clip to preserve the original bebawf
joint variables of the virtual prototype of the otz arm  virtual robot.
and displays on a graphical user interface theutieol First, a motion capture system transforms Cartesian
of the virtual prototype during the carrying out thie position of virtual robot structure to virtual joiangles
robotic task. The virtual joint dataset, from thatal based on kinematic model. Then, the joint angles ar
registers of the port of the hardware structuretref  converted in binary words and transferred to reabt.
programming platform are transferred into the datawe employ the control loops structure to establish
registers of the numerical comparators of the ofletis.  relationships between the virtual and real robottes
These datasets are reference inputs of the puosyps,! systems. We present results demonstrating that the
resulting a system control. proposed approach allows a real robot to learn tow

The PC runs the operating system with the timedines move based exclusively on virtual robot motion capt
support necessary for time-stamping, periodicviewed as predictive control strategy.
transmissions and task temporal synchronization
provided by a specially developed user-level réaet 6. IMITATION LEARNING BY DATASET
scheduler, the Process Manager. TRANSFERRING

This approach provides sufficient timeliness suppor . . o .
bp P PP We consider a reduction of imitation learning to

for soft real-time applications, such as multiptebat . . o
coordination, and allows profiting from the better onI|r_1e dataS(_at traqsferr|ng wher(_a we tregt mmn@gﬁs
of virtual trajectories under a single policy asiagle

development support provided by general purpose” . i 4 : X
operating systems. online-learning example. Our goal is to train thgygcal

This approach also estimates the response of eac?*?bm to do their task based on current virtual gea
e

action through a predictive motion virtual modelntore atoulrﬁseis é?g)?st,;%cg;:jggﬂtr?];re Izai?rlwblealsuc?r?t?{mt tha
accurately predict theirs consequences. Our approac, P op P g aig
. . . as full access to the virtual states and trandétaset
represents a technique for generating animate . : .
o . . . rom the virtual demonstrations to physical robét.
navigation offline, by pre-computing layered tragges . . . ; o
) . . transfer action consists of binary variables intlica
for a physical robot. Pre-computed trajectories seime

) which subset of virtual path should be reproducgd b
gSi?et?r?eVrlcr)tggtl prototype and are used to autonsiyo physical robot joints, at each transferring intérva

A . . However, there are many tasks that are described in
Designing a virtual model would be an option

. . - ' terms of possibly conflicting objectives, e.g., ation
however, the behavior of the robots is very dificio ._control system should minimize latency and maximize
model. Moreover, the use of system knowledge

i 'Sthe possible quantity of data that can be tranenhitt
contrary to our research aim. Therefore we focus Ofheyyeen virtual and physical collaborative agents.

creating a virtual prototype model from experiménta  \ye find an optimal control strategy that uses the

data obtained from the physical robot model. virtual model of the robot system to obtain an wyati
Users interact with the simulation —environment .qntro] sequence by minimizing an objective functiat

through the visualization. This includes, but natited  each transferring interval, the virtual model idisto

to, computer screen. Optimization of the real rebot predict the behavior of the physical robot systerara

behavior is performed in the low dimensional vittua prediction horizon.

space using the virtual robot prototypes. Based on these predictions, an objective function i
The visualization provides an interface to developminimized with respect to the future sequence pfita

interactive implementations based on simulated Wieha  for each transferring interval.

of the model. Although prediction and optimization are performed
In our work we assume that learning of the over a future horizon; only the values of the impfdr

deterministic part for description motion dynamics the current transferring interval are used. The esam
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procedure is repeated at the next transferring. tivie
begin by introducing notation relevant to our .

6.1. Time Distribution Multiple Access (TDMA)
According [12] one consider thetate s, and we

denoteC(s, a) the expected immediate cost of performing

actiona in states for the task we are considering. One
denotes:

Cr(S) = Epeg [Ca(9)], (1)
the expected immediate cost of polizyin state thes.
Also we assum€ is bounded in [0; 1].

One denotes by spatkthe class of policies the robot

agentimitator is considering and refers Tothe imitation
task horizon.

For any policyr, one let d; indicate the distribution

of states at time if the robot learner executed poliay
from time step 1 td — 1. In addition, one represents the
average distribution of states if a robot agentbofet a
policy = for T steps:

de= WY, dY . )
The total cost of executing policy for T-steps, is
denoted by cost function:

IM =Y, EegCa9l=TE , [Ca(s)]. (3

In imitation learning, we observe virtual expert’
demonstrations and investigate to bougd for any cost
function based on how well policy mimics the virtual
expert’s policyr .

Indicate | — the observed loss functior one
minimizes the cosC. We are interested in optimizing
the learner’s ability to predict the actions usagirtual
robot prototype expert. A physical robot agentdal a
policy 1. Our target is to find a policyTt which
minimizes the observed loss, under its
distribution of states, i.e.:

ft=argminE4 [I(s, T[)] .
Ton !

(4)

As robot dynamics is assumed both unknown and

complex, we cannot compute the average distribution
statesd, and can only sample it by executing policin
the robotic system. The interaction between poaoy
the resulting distribution  makes  optimization
complicated.

6.2. Reduction to Online I mitation
Let,
(M) = Eqq_[I(s T TE(9))] (5)
The expressiorlj(r) denote the expected substitute
virtual robot loss of executing policyt in states
distributed according tod; In an online imitation

learning setting, in iteration an algorithm executes
policy z; and observes losk(m). It then provides a

induced

135

different policy m+; in the next iteration and observes
loss lizi(mi+1). A success dataset transferring policy
guarantees that, N transferring iterations.

N N
iZli(Tri)—miniZIi(T[)syN and limy, =0. (6)
NiZ Nz N e

Assuming a strongly convex loss function, our
transferring-data algorithm admits a success poliay
each transfer iteration admits the policy that vsoblest
so far:

i
T,y = argmin 3 1;(m) - (7)
j=1

At iteration i we choose the policy that has the
minimum demonstrator loss on all previous transferr
data. Thus, it can be interpreted as virtual ttajees
transferred policy is treated as online-programming
example. However, it can be hard to find a goodcpol
that has a low training error, since the demorstist
policy may resides in a space that is not imitabl¢he
learner’s policy space [14].

When the optimal action is hard to achieve, we
propose to train gradually the imitator with easyldarn
actions. A virtual demonstrator trains the physical
imitator iteratively in a fashion similar to DAgger
algorithm.

The training becomes robust by showing more
demonstrator actions as the imitator makes progress
Intuitively, this allows the learner to move toward
better action without much effort. Thus our algomit
achieves the best action gradually instead of ajrainan
impractical goal from the beginning

6.3. Limitation of the Imitation

A virtual demonstrator can be firm to imitate inotw
ways. First, the learning policy space is far frohe
space that the oracle policy lies in, meaning timet
learner only has limited learning ability.

It can be hard to find a good policy that has a low
training error, since the demonstrator’s policy may
resides in a space that is not imitable in the dtoits
policy space. For instance, the task loss functiothe
imitator’s space can be very different from the
demonstrator’ loss [15, 16].

Second, the environment information known by the
virtual demonstrator cannot be sufficiently infetreom
the state, meaning that the imitator does not leeess
to good learning resources.

In the online learning scenery, a too-good
demonstrator may result in adversarial varying loss
functions over iterations from the learner’s pecipe.
This may cause brutal changes during policy updatin
These difficulties result in a substantial gap kesw the
virtual demonstrator’s performance and the best
performance achievable in the policy spBce

7. CONCLUSIONS

Virtual prototyping is an aspect of information
technology that permits analysts to examine on a
computer monitor the behavior of the physical rebot
using her virtual prototype.



136 A. Fratu and M. Fratu / Proceedings in ManufachgiSystems, Vol. 11, Iss. 3, 2016 /4136

By virtual prototyping one uses a virtual model in chains The International Journal of Robotics Research,
lieu of a physical robot model, for test and evaaraof vol. 27, no. 7, 2008, pp. 76184. _ '
specific characteristics of a candidate design. [4] W. Takano and Y. NakamuraHumanoid robots

autonomous acquisition of proto-symbols throughiomot
segmentationin Proceedings of the 2006 6th IEEE-RAS
International Conference on Humanoid Robots,

There is a trend to use of virtual prototypes dyitime
design analysis process. A virtual prototype isigital

model with a degree of functional realism compagdbl HUMANOIDS, 2006, pp. 425431.

a physical model. The value of virtual prototypify (5] K. Ramirez-Amaro et alTransferring skills to humanoid

rapidly being recognized for a wide range of engrirey robots by extracting semantic representations from

applications. observations of human activitiedrtificial Intelligence
The advantages of such approach, as an alterriative (2015),

the classical methods, are on-line adaptation ® th ggtp:”dx-d‘)i-orgl 10. 1016/ . arti nt. 2015. 08. 0
motion of the virtual prototype obtained as initiaining [6]

. . M. Muehlig et al., Task level imitation leany using
model. These types of trajectory level techniques a variance based movement optimization, ProceedBEE |

very useful for extracting relevant information rfto International Conference on Robotics and Automation
activities, as well as for transferring these medtd (ICRA), 2009, pp. 16351642.

artificial systems. Transferring the models acqlifiom [71 A. J. ljspeert, J. Nakanishi, and S. Schaahjectory
virtual demonstrations to physical robots is a lemgjing formation for imitation with nonlinear dynamical sgms
task for the building of the adaptive and autonosnou In IEEE/RSJ International Conference on Intelligent
robots, mainly because it requires the generatidask- Robots and System#001, pp. 752-757.

e : : [8] B. Argall et al., Learning robot motion control with
zﬁ\e/icrglgm;:?t should be naturally in a physical demonstration and advice-operatprsin: IEEE/RSJ
; N . . International Conference on Intelligent Robots and
Our major contribution is an online dataset Systems (IROS), September 2008, pp.299.
transferring algorithm for imitation learning taskghere [9] B. Argall et al., A survey of robot learning from

the available space policy is not adequate foraitinity of demonstration In: Robot Automation Systems 57 (2009)
the demonstrator. No. 5, pp. 469483.
[10] A. Fratu, M. FratuJmitation-Based Motion Programming
ACKNOWLEDGMENTS: The authors wish to for Robotic Manipulators Proceedings of 14th

thank for cooperation and engagement in research International Conference on Optimization of Eleatiand
activity the entire team of Services and Products f E'r‘zg\?né%nfgr‘:igmeng%P?TgM 2014, May 22-24, 2014,
Intelligent Environment Laboratory, within the Raseh = » PP j

. [11] A. Fratu, B. Riera et al.Predictive strategy for robot
& Development Institute ICDT-PRO-DD of the behavioral contral Proceedings in Manufacturing

Transylvania University of Brasov. We hereby Systems, vol. 9, issue 3, pp. 1230.
acknowledge the structural funds project PRO-DD§PO [12] St. Ross et al.A reduction of imitation learning and
CCE, 0.2.2.1,, ID 123, SMIS 2637, ctr. No 11/20a9) structured prediction to no-regret online learnjng
providing the infrastructure used in this work. Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS)021, pp.
627-635.
[13] T. van Erven et al.Follow the Leader with Dropout
REFERENCES Perturbations In Journal of Machine Learning Research
(JMLR): Workshop and Conference Proceedings, 2014,
[1] H. Kadone and Y. NakamuraHierarchical concept vol. 35,pp. 1-26.
formation in associative memory models and its [14] V. V. V'yugin, Online Learning in Case of Unbounded
application to memory of motions for humanoid rabot Losses Using Follow the Perturbed Leader Algorithm

Proceedings of the 2006 6th IEEE-RAS International Journal of Machine Learning Research, vol. 12, 2@p1,

Conference on Humanoid Robots, HUMANOIDS, 2006, 241-266.

pp. 432437. [15] A. Coates et al.Learning for control from multiple
[2] M. Pardowitz et al.Incremental learning of tasks from demonstrationsIn Proceedings of the 25th International

user demonstrations, past experiences and vocal Conference on Machine learning, 2008, pp. 144-151.

comments,|IEEE Transactions on Systems, Man and [16] A. Powers, S. Kiesler, S. Fussell, and C. Tgrre

Cybernetics, Part B 37 (2007), No. 2, pp.-322. Comparing a computer agent with a humanoid robot
[3] D. Kulic, W. Takano, and Y. Nakamurdncremental Proceedings of the ACM/IEEE international confereone
learning, clustering and hierarchy formation of wéo Human-robot interaction (HRI '07), ACM, New York, NY,

body motion patterns using adaptive hidden markov USA, pp. 145152, 2007.



