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Abstract: This paper outlines the experimental research on cutting forces produced during ball-end 
milling of multi-layered metal materials manufactured by the laser engineered net shaping (LENS) 
process. The research employs an adaptive neuro-fuzzy inference (ANFIS) modelling technique for 
simulating the dynamic cutting force components during the machining of 16MnCr5/316L four-layered 
metal material with a solid carbide ball-end mill. A Kistler dynamometer was used to measure the actual 
cutting force, which was compared with the estimated one obtained via suggested procedure. Hardness 
and thickness of the particular manufactured layer in above mentioned advanced material have been 
considered during developing of the ANFIS models. Analysis of the developed models has been performed 
to test their validity. Model predictions were compared with experimental data and were found to be in 
good agreement. Experimental results demonstrate that this method can accurately predict cutting force 
within a maximum prediction error of 4.1%. 
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1.  INTRODUCTION1 
 

The machining of multy-layerd functionally graded 
metal materials manufactured by LENS technology lead 
to undesirable effects such as tool breakage, rapid cutting 
tool wear, surface deterioration and shelling of the 
cladded layers (delayerization). These effects, especially 
delayerization, are directly connected to the cutting tool 
forces acting on the workpiece. Therefore, there is an 
interest to predict precisely the cutting forces during 
milling of these materials. 

In milling the relationship between process 
characteristics and cutting forces is difficult to capture. 
This is due to the complexity of the relationship between 
cutting forces and process characteristics. In workshops, 
inspection of cutting forces is accomplished by on-line 
measurements. This approach is uneconomical. 
Therefore, an in-process method based on prediction 
model is required. Several models have been proposed to 
estimate the cutting forces. These include classical 
statistical approaches as well as fuzzy systems [1] and 
neural networks. No work has been found for multy-
layered functionally graded metal materials in literature.  
Most of the research work reported in this regard, which 
is based on either analytical or semi-empirical 
approaches, has in general shown only limited levels of 
accuracy and generality. For instance researchers [2, 3] 
developed an approach based on regression for 
estimating cutting forces in machining while [4] have, 
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respectively, used genetic programming for estimating 
cutting forces over a limited range of cutting conditions.  

The capacity of artificial neural networks to capture 
nonlinear relationships in a relatively efficient manner 
has motivated a number of researchers to pursue the use 
of these networks in developing cutting force prediction 
models [5]. But in such models, the nonlinear 
relationship between sensor readings and cutting forces 
embedded in a neural network remains hidden and 
inaccessible to the user [6]. 

In this research we attempt to solve this situation by 
using the ANFIS system to predict the cutting forces. 
This model offers ability to estimate cutting forces as its 
neural network based counterpart but provides an 
additional level of transparency that neural networks fails 
to provide.  

 
2.  PREDICTIVE CUTTING FORCE MODELING 
 

The aim of this research is to develop precise and 
reliable models for predicting cutting force components 
produced during machining of four-layered functionally 
graded metal materials. This chapter outlines the 
adaptation of the ANFIS topology to cutting force 
prediction problem. The cutting force prediction models 
are built according to the ANFIS method. The ANFIS 
method seeks to provide models for the prediction of 
cutting forces from the knowledge stored in the trained 
neural network. By given input/output data set, the 
ANFIS method constructs a fuzzy inference system (FIS) 
whose membership function parameters are tuned 
(adjusted) using a backpropagation algorithm. This 
allows fuzzy systems to learn from the data they are 
modeling. FIS Structure is a network-type structure 
similar  to  that  of  a neural  network, which maps inputs 
 
 



48 U. Zuperl and F.Cus/ Proceedings in Manufacturing Systems, Vol. 12, Iss. 2, 2017 / 47−52 

 

 
 

 
 

 
 

Fig. 1. Flow chart for training and employing the ANN based cutting force model. 

 
through input membership functions and associated 
parameters, and then through output membership 
functions and associated parameters to outputs.  

Fig. 1 shows the basic flow chart for predicting the 
cutting forces via ANFIS. 

Four steps are required to develop an ANFIS system.  
In step 1, the training and testing data are loaded to the 
system. The process variables are spindle speed (n), feed 
rate (f ), axial depth of cut (AD), radial depth of cut (RD), 
cutting tool diameter (D), hardness of the machined 
material (HV) and the layer thickness of functionally 
graded material (d). The inputs are the cutting conditions 
and LENS process parameters. The output is cutting 
force sensor signalThe whole data set is divided into the 
training and the testing set. 400 data points were used in 
this study. The training data set is used to find the initial 
premise parameters for the membership functions by 
equally spacing each of the membership functions. A 
threshold value for the error between the actual and 
desired output is determined. The FIS architecture and 
training parameters were defined in step 2. The 

optimization method, the tolerance error, the maximal 
number of epoch, the number of membership functions 
and the membership functions types are defined. The 
optimum training parameters were determined by the 
simulations. The optimum ANFIS model contains 36 if-
then rules. The output from the ANFIS is one cutting 
force component; therefore, three ANFIS models are 
necessary.  

In step 3, the training phase is accomplished. With 
the input–output data, the neuro-fuzzy algorithm is 
trained, and the unknown parameters are identified.   

Figure 2 shows the inputs, membership functions, and 
the fuzzy inference system for cutting force prediction. 
During the training stage, the ANFIS adjusts its internal 
structure to give correct output results according to the 
input features. The process is terminated when the error 
becomes less than the threshold value. 

During training in ANFIS, 400 sets of experimental 
data are used to conduct 500 cycles of learning.  Training 
of the ANFIS can be stopped by two methods. In the first 
method, ANFIS will be stopped to learn only when the  
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Fig. 2. Architecture of ANFIS cutting force models. 
 
 
testing error is less than the tolerance limit. This 
tolerance limit would be defined at the beginning of the 
training. It is obvious that the performance of a ANFIS 
that is trained with lower tolerance is greater than ANFIS 
that is trained with higher tolerance limit. In this method 
the learning time will change with the architecture of the 
ANFIS. The second method to stop the learning is to put 
constraint on the number of learning iterations. In our 
study, the ANFIS architecture is stopped to learn after 
400 training iterations. After the ANFIS models had been 
trained there were applied to 150 additional input-output 
data pairs that were excluded from the training process. 
This time the cutting force components (values of output 
vector) were not supplied, so that the trained network had 
to predict them. The predictions were compared to the 
cutting force measurements and the prediction errors 
were calculated. It was found out that the error of testing 
for the 150 examples was converged to 4.1%, which is 
higher than error of training (2.8%). The lowest error of 
testing is reached at iteration 350.  

Finally, in the fourth step the trained ANFIS models 
are used to predict cutting forces. After the training, the 
inference system could estimate cutting forces from 
selected cutting conditions in real time. The developed 
ANFIS models can guide system or operator in tool 
change decisions making. 

 
3.  EXPERIMENTAL EQUIPMENT  
 

To develop the cutting force prediction models, 
experimental results were used. Experiments were 

performed on a CNC machining platform Heller, under 
dry cutting conditionsv with FAGOR CNC controller.  

The solid end milling cutter tornado with two cutting 
edges, of 8 mm diameter and 29.9° helix angle was 
selected for machining. The radius of the cutter edge is   
4 mm. The cutter is made of a sintered tungsten carbide 
material (rode) K88UF with the hardness of 1770 HV in 
Emo orodjarna d.o.o. The cutting edges were coated with 
PVD-TiAlN coating. 

The cutting forces were measured with a piezoelectric 
dynamometer (Kistler 9255) mounted between the 
workpiece and the machining table. The cutting force 
signals were monitored by using a fast data acquisition 
card (National Instruments NI 9215 A) and software 
written with the National Instruments CVI programming 
package.  

The force measurements were sampled at 20000 
points/second and then digitally low-pass filtered at a 
cut-off frequency of 250 Hz to eliminate the high-
frequency components resulting from the machine tool 
dynamics. These settings were limited by the available 
random access memory (RAM) of the computer. The 
digital data from the A/D board were then acquired and 
stored by the LabVIEW software into three files for the 
three force components. The data were also displayed on 
the computer monitor for inspection. The resultanat 
cutting force was then determined. 

The data acquisition package used was LabVIEW. 
The experimental set up can be seen in Fig. 3.  

The four-layered functionally graded metal material 
was used in experiments. The workpiece material is 
made of a 16MnCr5 basic material and 4 stainless steel 
(316L) layers with a singular 0.8−1.5 mm thickness, 
length of 50 mm and width of 15 mm.  

The overall thickness of the multidirectional layer 
was 3 mm with length of 50 mm and width of 15 mm.  

Nine such belts of stainless steel layers were welded 
on a singular workpiece with the 60 mm thickness, 
length of 180 mm and with of 70 mm.  

By varying the two LENS process parameters (Laser 
power, speed of laser head), 9 different test workpieces 
of four-layered metal material with different layer 
hardness and thickness were produced on the Optomec 
LENS 850-R machine located in Emo orodjarna d.o.o.  

In order to minimize the porosity of multilayered 
material the laser head trajectories during welding of two 
consecutive layers were programmed to be 
perpendicular.  

These workpieces serve for the purpose of 
demonstrating the predictive model capabilities in 
milling a stack of layers of different directions. The weld 
overlapping in all layers was set to 40%. The diameter of 
laser ray was 0.8 mm. 

The Vickers hardness of welded layers was measured 
by 7061 Zwick 3212 hardness tester. 

Layer thickness (d) of the manufactured four-layered 
functionally graded metal material is measured by a 
visual layer thickness measurement algorithm. The 
developed algorithm is using cross-section 
metallographic images of cladded layers for thickness 
measuring.  

The metallographic microscopic images for all 
manufactured test workpieces were obtained by a 
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Fig. 3. Experimental set-up for cutting force modelling. 

 
versatile Nikon Epiphot 300 Inverted Metallurgical 
Microscope. 
 
4.  EXPERIMENTAL PLAN  
 

The experiments were carried out for all 
combinations of machining parameters and LENS 
process parameters.  

Four and/or seven values for the radial and axial 
depth of cut have been selected: RD1 = 1.5 mm,        
RD2=2 mm, RD3=2.5 mm, RD4=3 mm; AD1 = 0.1 mm, 
AD2=0.2 mm, AD3=0.3 mm, AD4=0.4 mm, AD5=0.5 mm, 
AD6=1 mm, AD7=1.5 mm.  

The following values for spindle speed and feedrate 
have been selected: n1 = 3000 min-1, n2 = 3200 min-1,      
n3 = 3600 min-1, n4 = 4000 min-1; f1 = 100 mm/min,         
f2 = 150 mm/ min, f3= 200 mm/ min, f4= 250 mm/ min,   
f5 = 300 mm/ min.  

The combination of four values for the Laser power 
(P) and the cladding speed (c) was used to make the four-
layered functionally graded material: P1 = 300 W,          

P2 = 360 W, P3 = 380 W, P4 = 400 W; c1 = 30 mm/s,       
c2 = 48 mm/s, c3  = 55 mm/s, c4 = 60 mm/s. 
 
5.  RESULTS AND DISCUSSION  
 

This section presents the results of experiments and 
the comparison and analysis of results between the 
experimental and ANFIS models depending on the 
cutting parameters.  

The results and/or the values of cutting forces are 
graphically represented by means of diagrams depending 
on cutting tool angle rotation. A total of 300 sets of data 
were selected from the total of 400 sets obtained in the 
end milling experiments for the purpose of training in 
ANFIS.  

The other 100 sets were then used for testing after the 
training was completed to verify the accuracy of the 
predicted values of cutting forces.  

The best results were obtained when triangular 
membership functions were chosen for the neuro-fuzzy 
models.   
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Fig. 4. Comparison between experimental and predicted forces for 16MnCr5 / 316L four-layered functionally graded material at high 
depth of cut; AD≈ d; (Test No. 3). 

 

 
 

 
Fig. 5. Scatter diagram of measured and predicted forces for the testing data: a − Comparison of ANFIS predicted Fx with measured 

data; b − comparison of ANFIS predicted Fy with measured data; c − comparison of ANFIS predicted Fz with measured data. 
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During training of the neuro-fuzzy algorithm the 
parameters of membership functions, the optimal rules 
and the output weights were determined The smallest 
error of testing (ETest) is reached at iteration 145 
(traingular Mf) and at iteration 107 for the Gaussian Mf.  

Samples of the cutting forces obtained during ball-
end milling of the four-layered functionally graded metal 
material are represented by continuous line. The 
directions of Fx, Fy and Fz are along the normal, feed and 
axial direction. The force signals outline the tool 
engagement in one revolution.  

Fig. 4 shows the comparison of the predicted forces 
when triangular membership functions is used in ANFIS 
and the measured cutting forces.  

By comparing the results predicted by ANFIS with 
the results of experiments the following was established: 
the values from prediction coincide well with the values 
from experiments and in addition, the process of the 
change of the cutting force with respect to the angle of 
rotation of the milling cutter and the amplitude agree 
well, with only slight differences in the peak and valley 
regions of F.  

The cutting forces for milling at low axial depths of 
cut AD ≈ 0.5d are higher than those for milling when the 
AD ≈ d. (Fig. 4). Force signals also exhibit more 
fluctuation. This is probably due to the material porosity 
at the border between separate stainless steel layers. The 
greatest difference between model predictions and 
experimental results appear in the normal force on the 
boundary region between two cladded stainless steel 
layers (Fig. 4).  

The slight differences between the simulated and 
measured results are believed to be caused by the cutter 
runout, which is evident from the repeated tooth passing 
patterns in the measured forces. 

Figue 5 shows the scatter diagram of the predicted 
values and measurement values of the Fx, Fy and Fz 
cutting forces of 100 sets of testing data. It shows that the 
predicted values of cutting forces follow the 45. line very 
closely. The predicted values are very close to the 
experimental measurement values. 

The average error of the prediction of cutting forces 
is around 4.1% when triangular membership function is 
used in ANFIS.  

The training was very fast, and the error reached a 
constant value after about 90 epochs. In this case, there 
were 36 rules in the fuzzy inference system. The 
prediction accuracy of ANFIS when the triangular 
membership function is used is higher than that when the 
trapezoidal membership function is used.  

The maximum percentage prediction cutting force 
error is found to be less than 4.1% for all the cases tested. 

In other words, the predicted values are not far from 
the experimental measurement values. 

The system with incorporated ANFIS models was 
capable of predicting the cutting forces in real time. 
Wrong predictions accrued when the feed rate and 
rotational speed were low.  
 

6.  CONCLUSIONS  
 

The research outlines an experimental investigation 
on the measurement of cutting forces during CNC end-
milling operation of four-layered functionally graded 

metal material. Based on the experimental data an 
adaptive neural fuzzy inference models were developed 
to predict the cutting force components. The correlation 
between cutting force components, cutting conditions 
and LENS process parameters were determined via 
ANFIS modeling.  

The solid carbide ball-end mill cutter with two flutes 
was used. Hardness (HV) and thickness (d) of the 
particular manufactured layer in multy-layered 
functionally graded material has been additionally 
included into the input vector of the prediction models in 
order to improve the accuracy of predictions. 

The presented ANFIS model predicts cutting forces 
with 96% accuracy.  

The trained ANFIS models are capable to predict 
cutting forces for various cutting conditions, LENS 
process parameters and tool parameters. The sensor 
signals and the measured cutting force was analyzed off-
line and applied to a neuro-fuzzy method to determine 
the membership functions and rules.  

An effort is made to include only the most significant 
machining/proces parameters that influence the cutting 
forces. The training of ANFIS with the triangular 
membership function obtains a higher accuracy rate in 
the prediction of cutting force. Comparison between the 
actual cutting forces and the simulated results from the 
neuro-fuzzy method showed good agreement.  

The trained model can be used to monitor milling 
operations and provide warnings to an operator. 

The following conclusions can be drawn from the 
study: 
• The layer thickness has a significant influence on 

predicted cutting forces. 
• Cutting forces for milling at low axial depths of 

cutting AD ≈ 0.5d are higher than those for milling 
when the AD ≈ d. The force signals exhibit more 
fluctuation, probably due to the material porosity at 
the border between separate metal layers. 

• The maximum prediction cutting force error is found 
to be less than 4.1% for all the cases tested. 
 

REFERENCES 
 

[1] I. Hanafi, A. Khamlichi, F.M. Cabrera, P.J.N López, A. 
Jabbouri, Fuzzy rule based predictive model for cutting 
force in turning of reinforced PEEK composite, 
Measurement, Vol. 45, No. 6, 2012, pp. 1424−1435. 

[2] T.S. Lee, Y.J., Lin, A 3D Predictive Cutting-Force Model 
for End Milling of Parts Having Sculptured Surfaces, 
International Journal of Advanced Manufacturing 
Technology, Vol. 16, 2000, pp. 773−783. 

[3] M. Milfelner, F. Cus, Simulation of cutting forces in ball-
end milling, Robotics and Computer Integrated 
Manufuring, Vol. 19, 2003, pp. 99−106. 

[4] M. Milfelner, J. Kopac, F. Cus, U. Zuperl, Genetic 
equation for the cutting force in ball-end milling, Journal 
of Materials Processing Technology, Vol. 164, 2005,     
pp. 1554−1560. 

[5] V. Tandon,  H.A. Mounayri, Novel Artificial Neural Net-
works Force Model for End Milling, International Journal 
of Advanced Manufacturing Technology, Vol. 18, 2001, 
pp. 693−700. 

[6] T. Szecsi, Cutting Force Modeling Using Artificial Neural 
Networks, Journal of Materials Pro-cessing Technology, 
Vol. 92, 1999, pp. 344−349. 


