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Abstract: One of the key elements of digital manufacturing is a simulation i.e. virtual modelling of all 
processes that belong to the manufacturing value chain. This paper aims at estimating the surface devia-
tion error in the free form surfaces machining error and estimate the effect on quality of the measuring 
process. A set of virtual experiments was designed by applying the central composite design approach of 
response surface methodology. The first set of virtual experiments determined the optimum tool path 
strategy. The second set of virtual experiment optimization inspection parameter to achieve maximum 
measuring accuracy and minimum measuring time. Fully developed methodology was applied to mold 
turbine blade. 
 
Key words: virtual optimization, sculptured surface, manufacturing, inspection, digital manufacturing, re-

sponse surface methodology, mathematical modelling. 
 

1.  INTRODUCTION1 
 

Today's business structure is more complex and dy-
namic than ever before. The market requires rapid 
changes in the industry with new products, which direct-
ly reflects on the work of the factory. Information tech-
nology (IT) provide new, unimagined possibilities, engi-
neers in the design and planning. These two approaches 
have led to two concepts that have emerged since then: 
the digital factory and digital manufacturing [1, 2]. 

One of the key elements of digital manufacturing (in-
cluding design-planning-production-inspection value 
chain) is a simulation i.e. virtual modelling of all pro-
cesses that belong to the manufacturing chain. Simula-
tions are frequently used to optimize some of the pro-
cesses of digital manufacturing, in order to improve qual-
ity of the process itself and its output. 

Modern industrial products impose the application of 
special manufacturing strategies and methods to meet 
functionality, quality and aesthetics. Engineering design, 
modelling, planning and machining of complex mechani-
cal parts that imply sculptural surfaces has been the sub-
ject of intensive research for almost three decades. Sculp-
tured surface machining (SSM) [4] is one of those meth-
ods widely applied to automotive, consumer electronics 
and aerospace. Their inspection is directly linked to the 
development of CMM and related software. Today, de-
velopment and application of the digital manufacturing 
concept set up a new basis for this research. In order for 
these manufacturing technologies to be properly applied, 
crucial parameters that define them need to be set by 
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experts and qualified personnel. Driven by the require-
ment to statistically reduce the parameters involved in 
terms of their significance ranking two approaches are 
distinguished: Taguchi’s design of experiments (DoE) 
and response surface methodology (RSM) [2]. 

Based on the digital product, the interoperability 
model is developed to integrate design, manufacturing 
and inspection based on STEP AP242 that was designed 
to improve the interoperability in STEP manufacturing 
chain [2]. In an engineering practice, freeform surfaces 
could be classified as complex geometrical features. 
According to ISO 17450-1, complex geometrical features 
have no invariance degree [5]. 

 
2.  VIRTUAL OPTIMISATION OF CAM PROCESS 

PARAMETERS 
  

RSM allows to trace the "optimum" (or near opti-
mum) response conditions step by step. The first-order 
design (2k factorial, Plackett–Burman, simplex) and sec-
ond-order design (3k factorial, central composite, Box-
Behnken) are the most-frequently used approximating 
polynomial models in classical RSM. The first-order 
design serves in a preliminary phase to get initial infor-
mation about the response system and to assess the im-
portance of the factors in a given experiment. The Cen-
tral Composite Design (CCD) is the most popular of all 
second-order designs, and is obtained by augmenting a 
first-order design. 

CCD is constructed by two sets of points plus ηC 
centre runs. The former set is a 2k or a 2k−p resolution 
fractional factorial design for all factors; whilst the latter 
set is the 2k axial runs for each factor with a distance α 
from the center. 

The aim of the present study is the development of a 
statistical model  which utilizes process parameters found  
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Fig. 1. CAD representation of the wind turbine blade mold 
components. 

 
Table 1 

The experiment design summary 
 

Study 
Type 

RSM Experiments: 30 

Response Name Units   
Y1 SD mm Actual Values 
Factor Name Units Low High 
A VC m/min 75.4 100.5 
B f mm/min 300 500 
C αe %Ø, mm 20 40 
D CD º deg 0 90 

 
 
in typical CAM software such as cutting speed, feed rate, 
step-over and cutting direction to investigate the regions 
for optimal parameter settings for surface finish optimi-
zation. Experiments were carried out in the form of simu-
lations for the machining of a wind turbine blade mold 
component (Fig. 1) under different conditions according 
the number of experiments [6]. Thereby, a predictive 
model for surface deviation is developed by taking ad-
vantage of ANOVA (Analysis of Variance) statistical 
values. RSM is exploited to conduct the experiments. 

The machining parameters treated as independent 
variables were cutting speed VC, feed rate f, step-over αe 
and cutting direction CD. The response was the surface 
deviation (SD) that occurs between the machined and the 
ideally designed 3D CAD model surface. Machined part 
is facet body (STL) obtained by generating IPW (In Pro-
cess Work piece). The IPW is a geometric shape that is 
produced by the Manufacturing application to represent 
the machined work piece at each stage of machining. 
Using Deviation Gauge command system display devia-
tion data between target objects (IPW) and one or more 
reference objects (model surfaces). The most often used 
class of designs to fit higher order polynomials is the 
central composite design (CCD). CCD is constructed by 
two sets of points plus center runs [8]. Experiment design 
summary after applying CCD to CAM software machin-
ing parameters is given in table 1, showing minimum and 
maximum value of chosen variables.  

Total number of experiments is 30. Figure 2 shows 7th 

experimental runs. Cutting speed VC (depends of cutter 
diameter & spindle rpm) and federate f (depends of feed 
per tooth, num. of tooth & spindle rpm) are not com-
pletely   independent   variables.   ANOVA   results  final  

Fig. 2. Mold Turbine Blade CAM; 7th experimental run. 

 

equation representing the quadratic model in terms of 
actual factors is showed in Eq. 1. 

Response surfaces allow the graphical observation of 
variations among quality objectives. With reference to 
the results of machining experiments and the stochastic 
model generated, three response surfaces for the surface 
deviation (mm) in relation to the experimental factors 
cutting speed VC (m/min), feed rate f (mm/min) and cut-
ting direction CD (ºdeg) are created. Resulting contours 
examined in response surfaces are in absolute accordance 
with the results presented earlier through statistical anal-
ysis. Fig.2 depicts the response surfaces. 

Figure 3 shows response surfaces for model evalua-
tion: SD f(VC,f), for αe = 30% Ø and CD = 45º (Fig. 3,a); 
SD f(VC,CD), for f = 400 mm/min and αe = 30%Ø        
(Fig. 3,b); SD f(f,CD), for VC = 87.92m/min and               
αe = 30%Ø (Fig. 3,c); SD f(CD, αe), for VC = 87.92m/min 
and f = 400mm/min (Fig. 3,d); SD f(αe,VC), for                         
f = 400 mm/min and CD = 45º (Fig. 3,e); SD f(αe,f), for    
VC = 87.92m/min and CD = 45º (Fig. 3,f). 

According to ANOVA outputs, the model’s F value 
(133.68) implies the model is significant, whilst; there is 
only a 0.01% chance that a "Model F Value" this large 
could occur due to noise. Values of "Prob > F" (P-value) 
less than 0.05 verify the significance of model terms. For 
the process parameters studied, stepover (αe) and the 
interaction between stepover (αe) and cutting direction 
(CD) are the most significant model terms (F = 1707.6 
with P < 0.0001 and F = 5.71 with P < 0.0304 respec-
tively). P-values greater than 0.1000 indicate the model 
terms are not significant. The value for "Pred. R 
Squared" of 0.9542 is in reasonable agreement with the 
"Adj. R Squared" of 0.9846. "Adeq. Precision" measures 
the signal to noise ratio. In general, a ratio greater than 4 
is desirable; hence, the ratio of 49.093 indicates an ade-
quate signal hence, it can be used to navigate the design 
region. 

The component which reflected surface finish was 
that of excess error. Excess error reflects a virtual surface 
texture indicator showing the material which a tool path 
may leave uncut due to programming inconsistencies. 
Table 3 depicts process parameter settings for both ap-
proaches together (prediction model and conventional 
CNC programming on CAM software) with resulting 
values for the response of surface deviation and excess 
error. 

Note that cutting parameters set for manual approach 
are very close to the optimal ones proposed by the model 
so as to strict prediction comparison; yet conform with 
tool manufacturers’ recommendations. 
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Table 2 

A part of CCD experimental design addressing 4 machining parameters and obtained response 
 

Run 
Cutting 
Speed 
(m/min) 

Feed rate 
(mm/min) 

Radial 
Cut ae 

(%Ø, 
mm) 

Cut Di-
rection 
(°deg) 

Machined 
Surface Area 
(mm2) 

Target 
Surface 
Area 
(mm2) 

SD Actual 
(mm) 

SD Predicted 
(mm) 

1 100.48 500 20 90 280842.7822 

280497.904 

0.000614383 0.00112 
2 75.36 500 20 0 280673.5882 0.000313067 0.00098 

… … … … … … … … 
29 100.48 500 20 0 280673.5882 0.000313067 0.00086 
30 100.48 500 40 90 283115.687 0.004644641 0.00394 

  

 
 

Fig. 3. Response surfaces for model evaluation [6]: a ‒ SD f(VC, f), for αe = 30% Ø and CD = 45º; b ‒ SD f(VC, CD), for       
f = 400 mm/min and αe = 30 %Ø; c ‒ SD f(f, CD), for VC = 87.92 m/min and αe = 30 %Ø;  

d ‒ SD f(CD, αe), for VC = 87.92 m/min and f = 400 mm/min. 

 Table 3 

Parameter settings and obtained results for quality objectives 
 

Prediction model (desirability for solution: 0.875) with CAM software 
Process parameters - settings Responses 

Vc (m/min) f(mm/min) ae (%Ø,mm) Cutting direction (°deg) Surface deviation (mm) Excess error (mean value) 
87.04 433.46 22.54% (2.25 mm) 52.89 Predicted: 0.00047 0.28 

Conventional CNC programming with CAM software 
Process parameters - settings Responses 

Vc (m/min) f(mm/min) ae (%Ø,mm) Cutting direction (°deg) Surface deviation (mm) Excess error (mean value) 
80 430 2 0 0.00053 0.34 

 

a b 

c 
d 

e f 
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3.  VIRTUAL OPTIMISATION OF CAI PROCESS 
PARAMETERS 

 

Our focus is on the development of a virtual CAI 
(Computer Aided Inspection) model based on CAD, that 
enables the inspection plan definition for complex, 
freeform surfaces of real parts inspected after the ma-
chining on CNC machines.  

Today there are two general approaches for the meas-
urement of freeform shaped parts: direct and indirect 
comparison [4]. The basic principle of direct comparison 
is to check the degree of deviation between the surface 
and master templates. In our case, these masters repre-
sent two-dimensional cross-sections of the surface to be 
inspected in a virtual CAD model. In freeform metrology 
it is fundamental to measure a large number of points and 
cross-sections distributed on the surface [5]. 

The inspection planning is the most important step in 
the development of CAI model [5] for a freeform sur-
face. In a context of the research presented in this paper, 
the most important approach is STEP and STEP-NC 
enabled inspection. Starting from STEP AP219, AP224, 
AP238 and AP242, CMM generates an inspection plan in 
DMIS (Dimensional Measuring Interface Standard ‒ ISO 
22093) format. 

The most important parameters of sculptured surfaces 
inspection on CMM are adopted as control factors in this 
experiment: number of control sections [NoCS], number 
of measuring points in the control sections [NoMP], and 
measuring points’ distribution along the control sections 
[DistrMP]. As it could be seen from Table 4, control 
factor NoCS is varied on 5 levels (3,6,10,14 and 18 con-
trol sections), factor NoMP on 5 levels (6, 11, 15, 21 and 
41 measuring points in a control section), and DistrMP 
on 2 levels: uniform [u] distribution (equal parameters 
along the curve), and the distribution with geometric 
progression ratio of 1.2 [g]. The selection of values for 
NoCS, NoMP and DistrMP was based on previous re-
search in freeform surfaces coordinate inspection (e.g. [4, 
5]). 

Virtual coordinate inspection of the lower segment of 
a mold turbine blade (MTB) was performed on a virtual-
ly machined part. Machined part is represented by the 
STL file obtained as a result of the machining simulation 
explained in first part of research. Nominal MTB geome-
try was transferred from the CAD/CAM system used for 
simulation of the measurements. The surface of MTB has 
been defined using a mesh of 18 main control sections, as 
shown in figure 4. Real MTB geometry presented by 
STL file has been obtained by choosing 28th run of total 
30 different machining strategies [6], as explained in 
chapter 2. Theoretical coordinates (XT, YT, ZT) are the 
obtained from the STEP file, measured coordinates are 

obtained from STL (XM, YM, ZM). Deviation presents the 
shortest distance between the theoretical and the meas-
ured DistrMP, the inspection curves are fitted using cu-
bic splines. In the virtual experiment, the number of 
control sections (NoCS) was varied from 3 to 18, to create 
a sheet body of the inspected part (MTB). 

Figure 4 depicts position and distribution of control 
section, used for simulation of coordinate inspection. 

 
3.1. Experimental Plan and Responses 

Since the number of levels is different for the control 
factors used in the experiment, the factorial design (with 
no replicates) is selected in order to design the experi-
mental plan. As a result, the generated experiment plan 
contains 50 experimental runs. 

Measuring accuracy is the most important indicator 
of CAI process quality. In this experiment, it is presented 
by the following characteristics (Table 5): 
• Distance Error: DEmean and DEstdev;  
• Angle Error: AEmean and AEstdev. 

Since the main objective is to maximize the measur-
ing accuracy, it is explicit that the goal is to achieve 
minimal DEmean and AEmean, and also to reduce their 
variation DEstdev and AEstdev. Measuring time, present-
ed over the probe path length (response L) is also ob-
served with the objective to minimize it. Therefore, in 
total, five characteristics are observed as responses from 
the virtual experiment.  

 

Table 4 
Control factors and levels used in the experiment 

 

 Levels 
Control Factors 1 2 3 4 5 
NoCS 3 6 10 14 18 
NoMP 6 11 15 21 41 
DistrMP u g - - - 

 

 

Fig. 4. MTB control sections and CMM simulation. 

Table 5 
A part of experimental plan and obtained response characteristics 

 

Run. Control factors Responses 
NoMP NoCS DistrMP DEmean [mm] Destdev [mm] AEmean [º] AEstdev [º] L [m] 

1 6 18 uniform 0.2219 0.3547 2.6185 5.2357 3.9 
2 6 14 uniform 0.2331 0.3467 2.7486 5.4246 3.2 
... ... ... ... ... ... ... ...   
49 41 14 geometric 0.0883 0.0965 0.9068 2.7649 11 
50 41 10 geometric 0.1053 0.1546 0.9603 2.6339 8 
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In order to assess the effects of CAI parameters on the ob-
served characteristics, the analysis was performed using RSM. 
Analysis of variance (ANOVA) for responses DEmean, 
DEstdev, AEmean, AEstdev and L are a full quadratic model 
(second order model) has been considered for all responses. 
The adequacy of regression models was evaluated using R2 
value that shows how close the actual data are to the fitted 
regression curve. It is important to mention that the R2 statistic, 
which in this case presents percentage of variation in a response 
explained by the observed control factors, is over 90% for all 
responses. This confirms validity of the statistical analysis that 
follows. The corresponding regression formulas are given 
separately for the uniform (u) and the distribution with geomet-
ric progression (g), respectively [7]; equitation 2‒10. 
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Since the experiment considered five responses, it is neces-

sary to select the optimal values of CAI control factors in order 
to maximize measuring accuracy (i.e. minimize DEmean, 
DEstdev, AEmean, AEstdev) and minimize measuring time (i.e. 
minimize L). It has been mentioned that the regression models 
for all responses are adequate, so the analysis of surface plots 
can indicate the optimal control factor settings. 
Fig. 5 shows surface plots for the responses AEmean (a), 
AEstdev (b) for uniform distribution; AEmean (c), AEstdev (d) 
and distribution with geometric progression; DEmean (e), and 
DEstdev (f), for the uniform distribution. 

In order to identify the control factors setting that simulta-
neously fulfil requirements for all responses, a response opti-
mizer (superposition plot) is generated. First, each response is 
converted into a desirability function (that takes values from 0 
to 1), and then the composite desirability function is calculated 
as the geometric mean of the individual desirability functions. 
In this experiment, the obtained solution must satisfy the re-
quirements to minimize all five responses. Since for the quality 
of CAI process the measuring accuracy (presented by distance 
error and angle error) is more important than the measuring 
time (presented over the value L), the importance of responses 
that describe the measuring accuracy is set to 5, and the im-
portance of response L that describes inspection time is 1. 
Results of simultaneous optimization, in terms of the optimal 
control factors setting, are: NoCS = 17; NoMP = 24; DistrMP = 
uniform; the composite desirability equals 0.87, so the obtained 
solution is accepted. 

The desirability for individual responses are: for DEmean, 
DEstdev and AEmean the desirability equals 1 (the ideal value);  

 
Fig. 5. Surface plots for the responses [7]. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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(10) 
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Fig. 6. CPM3 ‒ Inspection planning of turbine blades [9]. 
 

for AEstdev the desirability value equals 0.75 which is accepta-
ble; and for the response L the desirability equals 0.44 which 
could be expected since the importance of L is set to be five 
times smaller than for the other responses. The suggested con-
trol factors setting is adopted as the optimal solution of the 
observed problem – CAI of a mold turbine blade (MTB). 
 
4.  OUR RESEARCH IN THE FIELD OF CYBER-

PHYSICAL MANUFACTURING METROLOGY 
MODEL (CPM3)  

 

The framework of our CPM3 model is presented in Fig. 6. It 
consists of the following sub-modules:  

(a) Module for recognition of geometrical features from 
CAD/GD&T model of the measurement part;  

(b) Intelligent inspection process planning module,  
(c) Coordinate measuring machine (CMM) – generation of 

control data list for CMM that is transferred to CMM using 
cloud technology, and  

(d) Module for analysis of results and generation of the re-
ports.  

Cloud services within the company provide the necessary 
information for integration of knowledge and data from various 
phases in product design and manufacturing into inspection 
planning, and make available information about inspection 
results to all interested parties in product lifecycle. 

Geometrical features recognition module recognizes fea-
tures from 3D model of measurement part in a neutral CAD 
format, usually STEP. Geometrical features of interest depend 
on the type of measurement part and the applied standards. If 
recognition module does not have the application for recogni-
tion of the geometrical features for the considered measuring 
part in its database, the application for features recognition 
needs to be provided along with the part model. 

 
5.  CONCULUSION  
 

In the first part of the research RSM is used to assess virtual 
machining quality via the prediction of Surface Deviation as a 
target objective. A series of experiments conducted following a 
CCD having as independent variables cutting speed VC 
(m/min), feed rate f (mm/min), radial cut αe (%Ø) and cutting 
direction CD (°deg). A quadratic model was developed to relate 
the response with machining parameters. ANOVA and statisti-
cal analysis revealed that the quadratic model generated was 
significant (F value = 133.68), thus it can be used to predict 

surface deviation among designed and machined models in 
CAM. 

In the second part of the research RSM is used to assess the 
effect of CAI control factors (NoCS, NoMP, and DistrMP) on 
the quality of measuring process (measuring accuracy and 
measuring time). The measuring accuracy is presented by the 
distance error and the angle error, and the measuring time is 
presented by the measuring path length. The results of analysis 
performed using RSM are: NoCS and its square term are signifi-
cant for the distance error; all three control factors and/or their 
square terms and interactions are significant for the angle error; 
for the measuring path length only DistrMP is insignificant. 

Our research in the field cyber-physical manufacturing me-
trology model (CPM3) presented in this paper was concentrated 
on the: 
(a) defining CPM3 model and its structure,  
(b)  development of a model knowledge base for this model, for 

chosen example, and  
(c)  the establishment of total hardware and software configura-

tions.  
The next steps of this research are: 

(a) developing software structure of the virtual part of the 
model,  

(b) testing the IoT elements for this model. 
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