

Proceedings in Manufacturing Systems, Volume 14, Issue 1, 2019, 9-14

ISSN 2067-9238

TASK-ORIENTED OFF-LINE PARAMETRIC PROGRAMMING
OF AN INDUSTRIAL ROBOT SERVING CNC LATHES

George VOSNIAKOS1,*, Athena PAROUSI2, George LEIVADIOTAKIS3, Lucas BLEIN4, Charlotte LASSIME5

1) Prof., Manufacturing Technology Section, School of Mechanical Engineering, National Technical University of Athens, Greece

2) Dipl. Eng., Manufacturing Technology Section, School of Mechanical Engineering, National Technical University of Athens, Greece
3) M. Eng., Manufacturing Technology Section, School of Mechanical Engineering, National Technical University of Athens, Greece

4) Dipl. Eng., Ecole National d’ Ingenieurs de St Etienne (ENISE), Saint-Etienne, France
5) Dipl. Eng., Ecole National d’ Ingenieurs de St Etienne (ENISE), Saint-Etienne, France

Abstract: Industrial robotic arms are often employed in machine tool tending. If the scope of
programming is restricted to a specific machine tool type, the tasks involved become standard to a large
extent. Therefore, the corresponding movements can be parametrically described and linked to the shape
of the particular machine tool tended. Thus, a ‘master’ robot trajectory and corresponding robot
program in the supported language can be parametrically defined off-line by making use of a simplified
3D model of the machine tool and an accurate 3D model of the robot. Subsequently, this can be easily
tailored to the particular machine tool of the given type by simply updating the respective parameter
values. This process has been implemented and demonstrated for a six axis industrial robot tending
computer numerically controlled lathes.

Key words: robot programming, parametric, tasks, off-line, simulation.

1. INTRODUCTION 1

Industrial robot programming has been being
approached in various novel ways recently, notably:
teaching the robot its path by demonstration referring to
human gestures or metaphors on real or on virtual
environments [1], using augmented reality to provide
complementary information to the human programmer,
[2] etc. However, industrial robots are mostly still being
programmed by CAD-based off-line method, essentially
kinematic simulation, or alternatively by lead-through
on-line method. The reason is that these are well tested
over the years and, of course, that there are a large
number of robotic arms of the previous generation(s) still
operational in the manufacturing industry.

Off-line programming can be better accomplished if
the robot’s path is broken down into segments, each
being associated with a particular task. Both tasks and
segments can be defined parametrically, thus allowing
for easy adaptability to different robots, collaborating
machinery and production environment in general.

Task-based robot programming started being
exploited two decades ago, yet not in its fully parametric
version, which was made possible with the establishment
of constraint based kinematic solvers one decade later.

The first approaches pertaining to task-based
programming of industrial robots either proposed a
programming language describing the production

* Corresponding author: Heroon Politehniou 9, 15780 Athens,
Greece
Tel.: +302107721457; Fax: +302107724273
E-mail addresses: vosniak@central.ntua.gr (G. Vosniakos),
athinadasx @hotmail.com (A. Parousi), gleivadiwtakis@yahoo.gr
(G. Leivadiotakis), lucas.blein @enise.fr (L. Blein),
charlotte.lassime@enise.fr (C.Lassime)

environment and a flow of activities [3] or decomposed
the programming problem into several layers,
automatically mapped to programming instructions
which were tested on a simulator of the full robotic cell
[4]. Since tasks were especially evident to define in the
case of assembly tasks, an assembly language not only
described these tasks but associated robot movements
with them by referring to CAD-based kinematic
modelling [5]. A complex task needed to be broken down
into sub-tasks, easy enough for straightforward mapping
into robot movements [6].

Off-line parametric programming based on forward
kinematics or simultaneous movement of up to 3 joints
relies on accurate 3D models of the robot, jigs and cell
equipment and collision detection capability, e.g. in
press-brake tending [7]. Speed and accuracy of end-
effector centered programming are enhanced by
constraint-based modelling, as demonstrated in the case
of welding tasks [8], machine tool loading/ unloading [9]
and, generally, paths resulting from complex tasks [10].

Robotic tending of machine tools reduces non-
productive time spent in part handling and makes small
batches economically viable. Thus, fast programming of
the robot becomes a necessity. In this work, development
of a parametric application of loading / unloading lathes
using a particular robotic arm is presented, demonstrating
ease and flexibility of constructing robot programs for
any part that needs to be processed on CNC lathes.

Section 2 presents the type of machine tools targeted,
the robot and the developed end effector. Section 3 deals
with generic task definition and parametrisation. Section
4 outlines the link to robot program commands. Section 5
presents a typical case study and Section 6 summarises
the findings overall.

10 G.-C. Vosniakos et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 1, 2019 / 914

2. EQUIPMENT

2.1. CNC lathes
CNC lathes are the targeted machine tools that need

to be loaded and unloaded by the robot. They are
modelled in CAD environment in a simplistic way,
focusing only on their parts and dimensions that matter,
i.e. the spindle axis, the chuck, quill and the available
space behind the door and within covers, see Fig. 1.

2.2. Robot

A six link Stäubli RX90L robot is used as a typical
example of industrial robotic arms that can be
programmed following the advocated method. It weighs
112 kg and has a payload of 6 kg at nominal speed. Its
configuration is given in Fig. 2. Its joint speed and range
data are given in Table 1.

2.3. End effector

The end effector, a pneumatic two-finger gripper, was
designed and manufactured in-house so as to enable
secure holding of axisymmetric parts that can fit into a
cube of side 20 to 150 mm. The actuator is a double
action cylinder of 50 mm stroke, 10 bar max pressure,
458 / 394 Ν indicative push/pull force (at 6 bar). The
gripper consists of 28 parts of Aluminium alloy series
2000 weighing 3.7 kg, see Fig. 3.

Fig. 1. CNC lathe: a ‒ simplified model; b ‒ real counterpart.

Fig. 2. Robot configuration.

Table 1
Robot data

Joint (n) 1 2 3 4 5 6
Working range(°) ±160 ±137.5 ±142.5 ±270 +120-105 ±270
Nominal speed (°/s) 236 200 286 401 320 580
Max speed (°/s) 356 356 296 409 480 1125
Distance to Jn-1 (mm) 0 420 450 0 650 85

Fig. 3. Pneumatic gripper developed.

The maximum weight of the handled part is 6 − 3.7 =

2.3 kg. A substantial feature of the gripper is the double
plate finger, each plate being spherically hinged with
maximum deviation ± 20ο and spring loaded for
automatic return to equilibrium. This design enables
adaptability to different curvatures of the handled object.

The force exerted by each finger normal to the
grabbing surface F is [11]:

 F=P sin (α+β) b / (2 c sin α), (1)

where P is the force exerted by the pneumatic cylinder,
a, b, c are the lengths of the linkages and α, β are angles
characterising the pose of the mechanism, see Fig. 3.
Gripping force is calculated at 23 and 33 N for stroke 1
and 39 mm, respectively, at 4 bar pressure corresponding
to P = 120 N. A pressure increase up to 10 bar increases
the gripping force accordingly. Using finite element
analysis (Solidworks SimulationTM) maximum stress was
found to be much lower than yield stress, see Fig. 4.

The maximum velocity of movement for the handled
part was calculated by considering the friction force
exerted through the rubber pads of the fingers with a
coefficient of friction μ = 0.7 and the inertial forces
resulting from a maximum acceleration of 2g and
possibly centrifugal forces, at a radius 290 to 1100 mm,
for different cases, see Fig. 5, as well as mass handled.

Fig. 4. Strength analysis of the gripper.

Fig. 5. Limit loading cases: a ‒ lifting; b ‒ centrifuge.

 G.-C. Vosniakos et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 1, 2019 / 914 11

0 1

2 3

4 5

6 7

Fig. 6. Characteristic points (robot poses) in loading operation.

Table 2
Definition of lathe loading (CP/NP: current/next pose,
I: interpolation, S: straight, H: horizontal, V: vertical)

No CP NP
Motion

type
Gripper

mode
Sub Task Task

0 0 0 - Open Dwell Wait empty

1 0 1 I-H Open
Approximate

horizontal offset
align from home Move to

pick up
part

2 1 2 S-V Open
Accurate down
vertical align

3 2 3 I Open
Accurate horizontal

align
4 3 3 - Closed Grip Grip part

5 3 4 S-V Closed
Accurate up vertical

align
Move part
to home 6 4 1 S-H Closed

Accurate horizontal
move

7 1 0 I-H Closed Horizontal homing
8 0 5 I Closed Lathe near

Load part
to chuck

9 5 6 S Closed
Enter lathe & align

with chuck axis
10 6 7 S-H Closed Insert into chuck
11 7 7 - Open Open gripper Leave part

12 7 6 S-H Open
Axial retract from

chuck
Leave lathe
workspace 13 6 5 S Open

Radial exit from
lathe

14 5 0 I Open Return to home

Overall, the maximum attainable velocity of 12 m/sec
is allowable only for handled part mass up to 0.5 kg,
dropping to 4 m/sec for maximum allowable mass of 2.3
kg.

3. LOADING / UNLOADING TASK DEFINITION

The loading job can be broken down into tasks, each
of which is further broken down into sub-tasks. Sub-tasks
are defined in such a way as to enable easy adaptation to
any lathe and part dimensions. This largely means that
each sub-task corresponds to a collision-less movement.
Sub-tasks make use of a home position and another 7
positions (poses). Note that the term position refers to the
position and orientation of the end effector (gripper) is
3D space as well as the robot pose. The most important
of these positions are shown in Fig. 6, whereas the tasks,
sub-tasks and corresponding positions are summarized in
Table 2. The unloading job is defined in a very similar
way to loading, except in the inverse direction.

Each robot position is defined parametrically with
respect to the main dimensions of the lathe, the robot and
the part at hand, see Table 3.

There are two methods to calculate the robot joint
positions corresponding to characteristic points (0)-(7),
namely analytic geometry calculations in closed form
and CAD-based kinematics.

3.1 Analytic geometry calculations

Closed analytic solutions can be found for joint
coordinates for the tasks given in Table 2. As a first
example, the case referring to the end effector’s entry
into the lathe’s workspace, see Fig. 7, is indicatively
solved next.

Note that all linear dimensions depicted in Fig. 7 are
either input as parameters of the robotic cell, see Table 3,
or directly derived from them. The angles depicted are
solved for by first fixing gripper orientation at v = 80o .

Then, Eq. (2) and (3) can be written and can be combined
to yield Eq. (4):

 de = B cos w + C cos v – A sin α, (2)

 ze = H + A cos α +Β sin w – C sin v, (3)

 B2 = (de – C cos v)2 + (ze – H + C sin v)2 + A2 +
2A [(de − C cos v) sin α − (ze – H + C sin v) cos α]. (4)

Table 3

Robotic cell dimension parameters

 Dimension Set1 Set2

Lathe

Axis height (hc) 992 1100
Upper free point height 1340 1500
Free axis length 415 620
Workspace depth 400 490
Chucked part length 30 30

Robot

Length at home point 1605 1605
Robot base height 500 500
Gripper length 455 455
Contact length with part 100 100

Part

Length 138 180
Storage base height 787 787
Gripping point -unprocessed 83 125
Machined length 138 200
Gripping point -processed 83 125

12 G.-C. Vosniakos et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 1, 2019 / 914

 a

 b

Fig. 7. Pose 5: a ‒ real robot; b ‒ calculation sketch.

Equation (4) is solved for angle α, and, then, Eq. (2)

is solved for angle w. Then, angle β = w – α − π/2 and γ =
v + w. Referring to Fig. 7, angle α is positive and angles
β, γ are negative.

As a second example, the case referring to
approximate alignment of the gripper above the part to be
gripped, see Fig. 8, is solved for joint angles α, β, and γ.

 a

b

Fig. 8. Pose 1: a ‒ real robot; b ‒ calculation sketch.

 a b
Fig. 8. Simulation in SolidworksTM: a ‒ mate control; b ‒ pose.

 di = B cos w – A sin + C, (5)
 zi = H + A sin – B cos w. (6)

Equations (5) and (6) yield:

Β2 = (di − C)2 + (H − zi)2 + A2 + 2A[(H − ze) cos α +
 (di − C) sin α]. (7)

Equation (7) is solved for α (Joint 2). Then, Eq. (5)
yields w, which equals angle γ (Joint 5) and since w = 90
+ α − β angle β results (Joint 3). Angles α, γ are positive,
whilst β is negative.

All data entered is checked for validity as follows:
(a) All joints’ coordinates (angles) need to be within the

range defined in the robot’s specifications. If they are
not, the robot’s relative position to the lathe needs to
be changed.

(b) The part’s length has to be able to fit in the free
length of the lathe’s workspace

(c) The lathe’s axis needs to be parallel to the robot’s
global x-axis, otherwise their angle needs to be
measured with accuracy and be used to correct the
calculations.
The calculated joint coordinates corresponding to

each of the 8 poses of the robot are stored in a
spreadsheet. They are used to define the respective
movements, either as straight or interpolated segments as
stated in Table 2.

The movements are simulated using the kinematics
mode of SolidworksTM. The model of the robot is made
available by the manufacturer, as is the case with most
robots nowadays. Key to the kinematics simulation is the
definition of angle ‘mates’. The mate controller menu
enables the user to check the respective pose, essentially
in forward kinematics mode, transforming angles in the
range 0o‒360o, see Fig. 8.

It is also possible to compose a single animation file
out of these consecutive poses, thus obtaining a
continuous flow of robot’s movements.

3.2 CAD-based kinematics

If analytic calculations for points 0 to 7 as outlined in
section 3.1 are not desired, a lead-through approach can
be followed using the digital model of the robot. Analytic
calculations are based on moving one joint at a time
sequentially to control the path closer. Of course, the
same points could be used for multiple joint
simultaneous movement, but in that case the exact path

 G.-C. Vosniakos et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 1, 2019 / 914 13

Fig. 9. CAD-based detailed path planning.

would not be known, which might entail collision risks.
Furthermore, accurate path description in 3D space is
practically impossible outside a CAD-based
environment. Such description will keep characteristic
points 0‒7 but would add further points to modify the
path, for instance, to better control object clearance, see
Fig. 9. Apart from the fact that the resulting path
description is richer, the procedure is the same, i.e. point
coordinates will also be stored in a spreadsheet from
which the respective values are filled in into the robot
program subsequently. As in the previous case, see
Section 3.1, kinematic simulation is useful for collision
detection, too.

4. ROBOT PROGRAM DERIVATION

The robot program is essentially standard in terms of
the flow of commands as well as the very commands as
such, because the tasks and sub-tasks are standard, the
differences pertaining to numerical values of coordinates.

These are read from specific cells known beforehand
in the spreadsheet where the point coordinates are stored
after either analytic or CAD-based calculations.

The programming language is V+ [12], but this is
very similar to other languages, especially those
descending from the VAL family. The following
commands are made use of:
(a) DRIVE joint, angle change, % of max speed: operates
one joint in forward kinematics mode. This is mainly
used for approaching to and departing from points 4 & 5.
(b) MOVES point: simultaneously activates any
necessary joints to achieve interpolated straight line
movement of the gripper. This is mainly used for points
5, 6 and 7, i.e. movement inside lathe workspace in
inverse kinematics.
(c) MOVE: simultaneously activates any necessary joints
to achieve interpolated movement of the gripper. This is
mainly used when precise path control is not needed.
(d) SET: Defines a pose in forward or inverse kinematics.
(e) BREAK: This stops execution of the next commands
until completion of the current one.
(f) DELAY: This introduces dwell of prescribed duration.
It is used in waiting for machining and opening / closing
of the chuck.
(g) OPENI ‒ CLOSEI: The gripper is open / closed
before execution of the next command starts.

Any robot pose is defined in the following ways:
(a) #PPOINT: This prescribes six joint coordinates. It is
used for defining point 0.
(b) SHIFT (transformation BY x_s, y_s, z_s): This shifts
an initial point along z, y, z global axes. For instance, it
is used for defining points at the end of straight line
movements to and along chuck axis.

(c) HERE location_var: This defines a location by
assigning it the current joint coordinates. It is exploited
in order to define reference points that have been reached
in forward kinematics mode and need to be used
subsequently in inverse kinematics mode.
(d) TRANS (x,y,z,y,p,r): This defines a pose in inverse
kinematics mode, i.e. location (x,y,z) and orientation
(yaw, pitch, roll) of the end effector. It is used when a
closely controlled path is needed, defined by consecutive
poses, instead of a freely interpolated path based on its
start and end.

There are also two logical variables to check whether
the chuck is open / closed and whether the lathe’s door is
open / closed. Their values may be assigned by the
lathe’s controller when direct connection is possible,
otherwise they may be assigned by the user interactively.

An example of usage of the above commands in the
V+ program follows, parameter values being underlined:

SET #00 = #PPOINT (1,-89,91,1,1,1) ; pose 0
MOVE #00
BREAK
…
SET P3=TRANS(32.52,991.14,158.68,0,180,-90);pose3
MOVE P3
…
DRIVE 2,-39.56,80
BREAK
DRIVE 5,103.23,80
BREAK
DRIVE 3,106.33,80
BREAK
SPEED ALWAYS,20
HERE P5 ;pose 5
SET P6 = SHIFT (P5 BY 0,400,0)
MOVES P6 ;pose 6
BREAK
SET P7 = SHIFT (P6 BY -143.41,0,0)
MOVES P7 ;pose 7
DELAY 10
OPENI ;leave part

5. RESULTS

The approach described was implemented for two
different CNC lathes, an OKUMA LB10II and a HAAS
TL-1. The dimensions of the part were obtained by direct
measurement, whereas those of the lathes were obtained
by the respective specifications.

A special issue pertains to the relative position and
orientation of the robot with respect to the lathe.
Photogrammetry was used to measure the exact distance
of the robot base to the chuck axis as well as the latter’s
inclination angle to the robot’s x-axis, see Fig. 10(c).

ImetricTM’s photogrammetry system was used,
employing coded and non-coded targets, a high-
resolution camera (a NikonTM D90 with a SigmaTM
electronic flash), calibration scale bars, see Fig. 10(a-b),
as well as ImetricTM proprietary software for calculating
the coordinates of the targets in 3D space and fitting
primitive shapes to them, see Fig. 10(d).

Eight different results were obtained and their mean
was extracted as: θ = 2.07ο, α = 812.16 mm, b = 197.46
mm, hc = 992.51 mm.

14 G.-C. Vosniakos et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 1, 2019 / 914

Fig. 10. Photogrammetry measurement: a and b ‒ setup; c ‒
plan view of target layout; d ‒ results output to CAD system.

Fig. 11. Application example of CNC lathe loading.

An example of loading OKUMA LB10II lathe is

shown in Fig. 11, following ‘Set1’ parameter values
shown in Table 3.

6. CONCLUSIONS

Task based parametric programming of industrial
robots is conducted off-line and results in substantial

time savings. It is feasible when essentially the same task
is assigned to a robot, a stereotypical situation referring
to loading and unloading a machine tool. In this case,
differences pertain to geometry of the part that is handled
and the machine tool that is served, so these are the
parameters at hand. In addition, an end effector tool
universally employed in this kind of task is needed. The
task is broken down into subtasks and each of them is
assigned a section of the path. Path points are
topologically the same, only differing in terms of
coordinates. These are ideally computed analytically, but
if this is cumbersome or too complex, CAD-based
computation can be substituted. Kinematic simulation on
any CAD system supporting constraints is normally
necessary in order to check the path and safeguard it
against collisions. However, the exact position and
orientation of the robot with respect to the machine being
tended needs to be registered, ideally by photogrammetry
or equivalent high resolution technique.

The approach can be extended to cover other types of
machine tools and other robots, too.

REFERENCES

[1] X. V Gogouvitis, G.-C. Vosniakos, Construction of a
virtual reality environment for robotic manufacturing
cells, Int. J. Comput. Appl. Technol., vol. 51, no. 3, 2015,
pp. 173–184.

[2] S. Michas, E. Matsas, G.-C. Vosniakos, Interactive
programming of industrial robots for edge tracing using
a virtual reality gaming environment, Int. J. Mechatronics
Manuf. Syst., vol. 10, no. 3, 2017, pp. 237–259.

[3] E. Rutten, L. Marc, An imperative language for task-level
planning : definition in temporal logic, Artif. Intell. Eng.,
vol. 8, 1994, pp. 235–251.

[4] P. Rogalinski, An approach to automatic robots
programming in the flexible manufacturing cell,
Robotica, vol. 12, 1994, pp. 263–279.

[5] M. Prinz, H. C. Liu, B. O. Nnaji, T. Lueth, From CAD-
based kinematic modeling to automated robot
programming, Robot. Comput. Integr. Manuf., vol. 12,
no. 1, 1996, pp. 99–109.

[6] S. Benbernou, Factorization model of robotic tasks, Artif.
Intell. Eng., vol. 13, no. 1, 1999, pp. 11–20.

[7] N. Kontolatis, G. Vosniakos, K. Kyriakopoulos, On
parametric toolpath design of a robot serving a press-
brake, in 19th Flexible Automation and Intelligent
Manufacturing, pp. 137–146, Middlesborough, UK, F.
Nabhani (ed.), July 2009.

[8] G.-C. Vosniakos, P. Sierros, Flexible design, analysis and
programming methodology of robotic welding cells for
multiple configuration products, Int. J. Mater. Struct.
Integr., vol. 1, no. 1, 2007, pp. 212–237.

[9] G.-C. Vosniakos and A. Chronopoulos, “Industrial robot
path planning in a constraint-based computer-aided
design and kinematic analysis environment,” Proc. Inst.
Mech. Eng. Part B J. Eng. Manuf., vol. 223, no. 5, pp.
523–534, 2009.

[10] Z. Pan, J. Polden, N. Larkin, S. Van Duin, J. Norrish,
Recent progress on programming methods for industrial
robots, Robot. Comput. Integr. Manuf., vol. 28, no. 2,
2012, pp. 87–94.

[11] R. Datta, K. Deb, Multi-objective design and analysis of
robot gripper configurations using an evolutionary-
classical approach, 13th annual conference on Genetic
and evolutionary computation, pp. 1843-1850, Dublin,
Ireland, N. Krasnogor (ed.), July 2011, ACM.

[12] Adept Techn. Inc, V + Language Reference Guide. 1997.

