

Proceedings in Manufacturing Systems, Volume 14, Issue 2, 2019, 55-60

ISSN 2067-9238

NEW METHOD FOR SENDING DATA TO THE CLOUD
FROM AN OPC UA CLIENT APPLICATION

Gicu-Călin DEAC1,*, Crina Narcisa GEORGESCU2, Cicerone Laurențiu POPA3,

Costel Emil COTEȚ4, Florina CHISCOP5

1) PhD Student, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania
3) Associate Prof., PhD, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania

4) Prof., PhD, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania
5) Lecturer, Ph.D., Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania

Abstract: The present paper presents a new method for sending data to the cloud from a Client OPC UA
Application (Open Platform Communications Unified Architecture), using PNG images as a medium. The
data values encoded as pixel colors of images, using different encoding methods for each data type (text,
integer, float, Boolean) are also encrypted using an image as a symmetric encryption key and are stored
in the cloud in a time base folder structure. This method of sending and storing the data using an
encrypted image format assure a better data compression, security and speed, compared with the actual
JSON format which is text based and open. Based on the stored image files can be generated some index
image files containing the data values of each property (sensor value) for a chunk of time, in this way
reducing the total number of images and increase the compression of data, because of the small
allocation space on disk and similarity of data that are better compressed by the LZW compression
algorithm of PNG image format. This indexed image file can replace the actual SQL or NoSQL databases
and can be read by multithreaded agents using multicore processors for faster interrogation and easily
replicated to other servers by copying the new generated files.

Key words: IIoT, OPC UA, Big Data, Cloud, Data encryption.

1. INTRODUCTION 1

Taking into consideration the performance and the
effectiveness of a control system, I. Gonzales et al. say
that the key factor is represented by the interconnection
between sensors, controllers, instruments and cloud
services, through a communication network.

Supervising, tracking and automating technological
processes for both industrial and non-industrial settings
requires efficient transmission of information across
communication networks [1]. Wired or wireless channels
are used to communicate data. Due to mobility and
flexibility, wireless communication has great benefits
and will be widely used in IoT (Internet-of-Things).
Different wireless protocols such as Wi-Fi, Bluetooth,
ZigBee, 3G/4G/5G, RFID, Z-Wave, IPV6 over Low
Power Wireless Personal Area Networks (6LoWPAN)
and Near Field Communication (NFC) are available [1].

Industrial Internet-of-Things (IIoT) is a term used to
refer to the IoT applications in the industrial context and
implies the use of sensors and actuators, control systems,
M2M (machine-to-machine) communications, cloud
storage of Big Data, data analytics and security
mechanisms [1].

According to L. Monostori et al. another challenging
concept emerges, starting with the Industry 4.0 paradigm:

* Corresponding author: Gicu-Călin Deac, University "Politehnica"
of Bucharest, Splaiul Independenței 313, Bucharest 060042
Tel.: 0040 741073007
E-mail address: george.deac@impromedia.ro (Gicu-Călin Deac)

Cyber-Physical Systems (CPS) which means that
industrial machines have sophisticated communication
and smart capabilities, that devices are linked over the
network to detect, monitor and act on physical
components in the real world [2]. In order to simplify and
optimize this large-scale integration, proprietary
protocols and new evolving communication protocols
must converge on a prevalent protocol platform [2]. One
of the present existing protocols for industrial
communication is OPC-UA, a protocol that has been
standardized in the IEC 62541 series. OPC UA is an
open and secure platform that allows vendor-neutral
programmable logic controllers (PLCs) to communicate
with each other and up to the manufacturing level and
into the production planning or ERP system [7]. This
protocol can aid in data analysis, in addition to reducing
costs for licensing, staff training, hardware upgrades and
system migration. OPC UA is independent of the
platform manufacturer and from the programming
language in which the applications were developed [7].

At its core, OPC UA defines an asynchronous
protocol (built on TCP, HTTP or SOAP) that defines the
exchange of messages on raw connections via sessions,
alongside secure communication channels [8]. This
protocol replaces the OPC Classic protocol, retaining all
the functionality of its predecessor but being more
portable. Because OPC Classic was built upon a
Microsoft communication technology ‒ the Distributed
Component Object Model (DCOM), this protocol was
bound to Windows, which became increasingly limiting.

56 G.C. Deac et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 2, 2019 / 5560

On the OPC Foundation website at
https:/opcfoundation.org, the standard itself can be
purchased from IEC or downloaded for free. Open 62541
deploys the OPC UA binary protocol stack as well as a
Software Development Kit (SDK) for client and server.

The Micro Embedded Device Server Profile is
presently supported along with some extra characteristics
[8]. The OPC UA protocol describes 25 built-in types of
data and three methods to combine them into higher-
order kinds: arrays, constructions, and unions. Only the
built-in data types are manually described in open 62541.
All other kinds of information are produced using normal
XML definitions [7].

The OPC UA Built-in Data Types are: Boolean, Byte,
SByte, Int 16, UInt 16, Int 32, Int 64, UInt 64, Float,
Double, String, Date Time, Status Code, Guid, Xml
Element, Node Id, Expanded Node Id, Byte String,
Qualified Name, Localized Text, Numeric Range,
Extension Object, Data Value [8].

The OPC UA architecture can be represented as in
Fig. 1 [6], where Data producing Devices are PLC
(programable Logic Controllers), DCS (Distributed
Control Systems), IED (Intelligent Electronic Devices),
PAC (Programmable Automation Controllers) or DDC
(Direct Digital Control) and Data Consuming
Applications could be: HMI / SCADA, Historians,
databases, MES (Manufacturing Execution Systems) or
IoT & Big Data Platforms.

The OPC UA server is like a Middleman and can
discover all the nodes in the network, can map them and
get all the values from the sensors and processes, based
on a request from OPC UA Client applications.

The OPC UA standard was adopted already by many
industries, for example, Arburg GMBH and Co KG in
machine manufacturing, AREVA in the field of
renewable energy, for remoted wind farms, KU Leuven
for ground-based observatory control and Elster GMBH
in discrete manufacturing to connect shop floor to SAP
ME top floor [7].

Fig. 1. The OPC UA architecture.

2. IMAGE BASED DATA STORAGE METHOD

In the case of an IIoT platform, the data from sensors
and processes must be uploaded to the cloud and stored
in time series databases to be available for different
applications like predictive maintenance, process
optimization, and reports. The uploading process and the
storage imply a strong security policy to be implemented,
to prevent unauthorized data access [4]. The quantity of
data uploaded being also very high, some compression
algorithms must be taken into consideration.

The present OPC UA clients and proxy are using
JSON files to upload data to the cloud, this kind of files
being easy to read in the case of a man-in-the-middle
type of cyber-attack.

The present paper proposes a Client OPC UA
application that will read all the values from the OPC UA
Server, on timed cycles with a predefined frequency
(each second for example) and use a novel method for
encoding and encrypting of data and automatic uploading
in the cloud.

The method consists of creating full-color images (16
million colors) whose pixels are generated based on
numerical or alphanumeric values to be stored.

The color of each pixel can be defined by the three-
component R, G, and B with values between 0 and 255,
respectively 0 and FF in hexadecimal. The image size
can be defined according to the number of values to be
archived and their type. For example, to store 10000
positive integer values, a 100×100 pixel image will be
defined.

For encoding, there are several methods, depending
on the type of values to be stored:

a. In the case of positive integers between 0 and
16777215, the encoding can be done directly by
converting the decimal number to hexadecimal (ex.
16777215 becomes FFFFFF), the six-digit hexadecimal
string explodes into three groups of two digits and each
of this group is (R = 255, G = 255 and B = 255, in this
case, a white pixel corresponding to the maximum value
that can be stored);

b. In the case of positive and negative integers, the
same encoding variant as above may be used by having
the maximum value to +/- 8388607, the numbers being
encoded by summing the storage value by 8388607 and
decoding being made by subtracting this value;

c. For float numbers they can be converted to 16-digit
hexadecimal values: 00.00.00.00.00.00.00.00, requiring
three pixels for storage (R1G1B1, R2G2B2, and R3G3,
the last component B3, is not used). Thus, any float value
with any number of decimals, positive or negative, (in
IEEE 754 double-precision standard, the full range of
numbers is −9.999999×1096 through 9.999999×1096 [9])
can be archived using a group of three consecutive
pixels. The image will have the number of pixels equals
three times the number of archived float values;

d. For String, alphanumeric values (UTF8), the
conversion of each alphanumeric character into
hexadecimal is made according to the UTF8 encoding
table or a custom defined table defined (for example A

 G.C. Deac et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 2, 2019 / 5560 57

Fig. 2. Image generation.

becomes hex: 41, z becomes hex: 7a), so each pixel can
store a hexadecimal to decimal number of 3
alphanumeric characters, one for each component R, G,
and B. The image will have the number of pixels equal to
one third of the total number of characters.

e. Booleans values can be stored as alphanumeric
values 0 and 1.

For encrypting data of any kind, corresponding to the
above-mentioned encoding methods, an encryption
image with the number of pixels equal to the number of
stored variables is used.

The automated generation of the image key is based
on image size and using random values for Rk, Gk, Bk.
When variables (properties values) are encoded at each
variable converted in hexadecimal will be added the
hexadecimal value returned from the correspondent pixel
in the image key (for the first variable will be used the
first pixel, for the second variable the second pixel and so
on, or we can scramble the pixel order based on an
established rule). Can be used the hex sum or RGB
values or only one hex value (from R, G, or B based on a
variable ID established rule) (Fig. 2).

If the resulting value of R, G or B is greater than 255,
(FF in hex) the result will be decreased by 255 (FF in
hex). The decryption and decoding process is analogous
but in reverse. In other words, from the hexadecimal
value returned by decoding the RGB values of each
group of pixels (based on variable type and encoding
method) we will subtract the hexadecimal value returned
by RGB of the correspondent pixel in the Image Key
based on the established rule and then based on the
encoding method we will decode the variable value. If
the values obtained are negative, this value will be
increased with 255 (FF in hex) before decoding the
variable value.

In a real-life scenario, the method can be used for
encoding and encrypt mixed data types. In this case, can
be included some descriptive pixels for the device ID,
timestamp, number of floats, number of varchar variables
and their size, number of Booleans. (for example, first
three pixels for the device ID, next three pixels for the
timestamp in milliseconds, next pixel for the number of
floats, next pixel for the number of varchar variables,
next pixel for the size of varchar variable: ex: 24
characters, next pixel for the number of Booleans).

In IoT applications, the OPC UA Client application
will generate the images based on the device properties
values, with a predefined frequency (example: 1
time/sec) and send them to the cloud using a socket, or

any other protocol. The PNG images names can be
constructed on the following model:

deviceUniqueID_timestampInMiliseconds.png
example: kep35_31494270124240.png

and will be stored on the cloud in an arborescent file
structure based on a model like:
/deviceUniqueID/t1/t2/t3/t4/t5/t6/t7/deviceUniqueID_tim
estampInMiliseconds.png
example:

/kep35/1/4/9/4/2/7/0/ kep35_1494270124240.png

The folder structure can be generated based on
timestamp by exploding the first 7 characters and store
the images inside the last subfolder (t7). This storing
model allows a good management of time-series data, to
read, copy and replicate only the desired intervals. This
model also allows real-time interrogations of device state
at a specific time.

The PNG nondestructive compression, based on
LZW offers a great compression rate, comparing to
JSON files, the same amount of data being much smaller.

For this research was developed an IoT application
(Fig. 3) based on the presented method and were
generated a sample of data to perform comparative tests
[3]. The application includes also a graph view of time
series data and some machine learning algorithms like k-
means and linear regressions.

Was simulated a production process that has 100
different tags (sensor values) and using an OPC UA
client application the data was sent to the cloud databases
in both formats: JSON and PNG.

For a proper comparison was used an interval of 1
million records for each tag, with a frequency of 2 sets of
data per second, having in this case:

Historical data between 08 05 2018 18:57:01 and 14
05 2018 13:50:20 (1 million records of 100 tags 0.5 sec
rate).

Properties values: 59 floats, 24 texts (18 characters
length), 17 Booleans Raw data sent to the cloud: 1
million JSON files each contain 100 properties values:
transfer to the cloud approx. 16 GB, 1 million PNG
images each contain 100 properties values: transfer to the
cloud approx. 1 GB.

The amount of data transferred to the cloud in the
case of PNG format is significantly smaller (16 times
smaller) comparing to the JSON format, for the same
amount of data values. This means that the PNG format
is more suitable for packaging the data for transport to
the cloud.

58 G.C. Deac et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 2, 2019 / 5560

Fig. 3. IIoT web application screen.

Also, the PNG is encrypted using a symmetric image

encryption key and in the case of a man-in-the-middle
attack provides strong protection, comparing to JSON
files, that are protected only by the SSL encryption of the
OPC UA protocol. For storing data in the cloud, a
Cassandra Database Node and an image storage model
using PNG files were used.

Stored data: Cassandra Database Node, containing
the JSON files, needs 18.5 GB on the storage. In the case
of data retrieval, average time reading of properties from
Cassandra using a SELECT WHERE statement took an
average of 0.185 sec. Raw data snapshots in PNG format:
Storage on cloud: total: 562 folders each PNG have 960
bytes, 4.00 KB on disk (the stored size is bigger because
of the allocation units on the disk). There are in total: 562
folders, 1 million PNG with 960 bytes size: 954 MB, size
on disk: 3.81 GB. Average time reading of properties

from Image Database using SELECT WHERE clause
was 0.0026 sec.

The PNG model is much faster than the Cassandra
database (about 70 times faster), the speed difference is
even more radical in the case of a large database.

The advantage of the proposed method relies on the
fact that PNG is stored in a time-based folder architecture
and the speed of retrieval of the information based on a
timestamp does not depend on the size of the database,
because is not needed to load the entire database in
memory to execute the selection query. The replication
of the database is also much simpler in the proposed
method and consist of simply copying the folder
structure with its content to a new machine. Can be also
selected only a needed period for data, by copying only
the specific folders.

 G.C. Deac et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 2, 2019 / 5560 59

The data retrieval mechanism in the proposed method
needs significant smaller hardware resources, compared
to other databases such as Cassandra that needs to load
the data in memory to perform the queries.

3. CONCLUSIONS

Using the proposed method, one can achieve a secure,
fast and efficient way to send and store data in the cloud.

The data in the case of the proposed method is
encrypted using symmetric encryption, each value being
differently encrypted based on the correspondent pixel
color on the image key.

Because of the LZW compression, the PNG is much
smaller than JSON files and require 16 times less
bandwidth to send the same amount of data, or in the
case of the same connection bandwidth, the data sending
is about 16 times faster.

In the cloud, using this model of time-based folder
storage, the disk space is about 6 times smaller
comparing to classical databases.

The data retrieval in the case of the proposed model is
much faster (more than 70 times faster) than Cassandra
Node and require much lower hardware resources,
because the retrieval of data can be done without the
loading of entire database (or part of it) in memory, but
directly accessing the images from the correspondent
folder and reading the values of the correspondent pixels.

This method can be further developed in order to use
this image database as an alternative to actual SQL or
NoSQL existing databases by creating based on the Raw
image PNG files, some indexed images for each property
(sensor value) for a chunk of time (one hour, one day
etc., depending on the data acquisition frequency).

For example, choosing a day (24 hours) in this
example with 100 different properties (distinct sensors
data) will be generated at the end of a day, based on a
CRON script 100 different indexed images, containing
each one the values of a specific property in this 24-hour
interval.

To generate this image, RAW images will be read
based on the time from 0: 00: 00: 00 to 23: 59: 59: 50
(having data stored 2 times per second).

The corresponding values in the RAW image will be
decrypted and decoded, then the indexed image files will
be created.

The indexed image file can be also encrypted using
an image key and can have also descriptive pixels for
location, device, sensor ID, timestamp, etc. In this way,
for one day of operation, there will be 100 separate
indexed files, each containing 172800 values, instead of
having 172800 RAW images with 100 distinct property
values. These images will be stored in a folder structure
such as:

/deviceUniqueID/year-month-
day/propertyID/propertyID_year-month-day.png

Using this indexed image, the space needed for
storage will be even smaller and the reading speed of
data for reports over a long period will also be much
smaller because of a small number of files with bigger
sizes and the allocation unit on the disk does not count

anymore. Also, because the values of a distinct sensor
could be constant on a small period, the LZW
compression of the PNG image file will compress better
the image.

Even more, the files can be read by multithreaded
agents using multicore processors or CUDA for faster
interrogation. Also, the image files can be read by many
distinct processes at the same time, in parallel not by
using a queue like in the classical databases. This method
of storing big data using images could replace classical
databases like PostgreSQL or Cassandra.

An IoT implementation of the method can be seen on
Fig. 3 and accessed on [3].

On the same link, one can see a pseudo SQL API by
clicking on API button (Fig.4). A property based on id
(integers from 1 to 100) can be selected. The search will
return a web address like:

http://vps.impromedia.ro/dataimage/query.php?id=66&s
=2017-05-08T18%3A57%3A01&o=100&c=
&n=&d=&m=&k=&r=&l=&key=0

The query link can be accessed from any external
application sending the proper variables:
id – the ID of a property (sensor);
s – the starting timestamp of the query
 (in a date time format ex: 2019-05-08T18:57:01:00);
o – offset (number of timestamp base increments);
c – first condition of the WHERE clause

(can have this value: <, <=, =, >, >=);
n – the first value of the condition;
d – the second condition of the WHERE clause

(can have this value: <, <=, =, >, >=);
m – the second value of the condition;
k – ordering by variable
 (can have this value: t – for time base order and
 v – for value order);
r – ordering type:
 (can have the value: ASC and DESC);
l – limit (numeric value);
k – key (numeric value 0, 1, 2, … n you can specify a
different image encryption key);

For example, in order to select for the sensor ID = 10
first 50 values starting from 08.05.2019 18:57:01:00 into
an interval of 10000 records, WHERE sensor value > 10
and sensor value <= 100, ordered by value ASC can be
created a web query like:

http://vps.impromedia.ro/dataimage/query.php?id=10
&s=2017-05-08T18%3A57%3A01&o=10000&c=>&n=

10&d=<=&m=100&k=v&r=ASC&l=50&key=0

In this research was also created an experiment to
generate random numbers, to insert text using the
encode/decode process. The experiment application can
be seen on [10]. In this application, when you generate
an image based on the randomly generated numbers and
display this image, by hovering the mouse cursor over
this image pixels, you can see the property ID and the
value stored in each pixel.

As future research, the compression of PNG files will
be further optimized, using a Median Cut quantization
and Voronoi iteration (K means).

60 G.C. Deac et al. / Proceedings in Manufacturing Systems, Vol. 14, Iss. 2, 2019 / 5560

Fig. 4. Pseudo-SQL API interface.

Also, will be created using FFmpeg lossless video

files from PNG images to store the telemetry data.
The framerate of the video will correspond to data

retrieval interval (eg. 2 frames/sec) and experimenting
with different lossless video compression codecs will be
choose the better one.

Using the video archiving format, all the data will be
stored in a single file for an hour or even a day. To read
the stored data from the video file, it is possible to read
the correspondent frame, based on the timestamp.

A backup application based on the proposed method
can be created and will be used for backing up the data
from any database, in order to be archived or transferred.
 The application will generate images based on the
database content and will export SQL format files from
images, to restore the database data.

The graphical representation mode of the data can be
used for monitoring real-time data. For example, to
compare the real-time streamed sensor values with some
reference values generated from a digital process twin,
can be displayed a resulting image created on the fly by
inverting the reference image and overlay it with the
streamed image. In this way, if the reference values are
equal with the real one, the resulting image will be
entirely black. When some difference will appear, some
pixels will be lighted. By hovering the mouse on those
lighted pixels, can be seen in real-time the difference
from the reference values.

REFERENCES

[1] I. Gonzales, A. J. Calderon, A. J. Barragan and J. M.
Andujar, Integration of Sensors, Controllers and
Instruments Using a Novel OPC Architecture Published
online 2017.

[2] L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S.
Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, K.
Ueda, Cyber-physical systems in manufacturing. CIRP
Ann-Manuf. Technol. 2016.

[3] Cloud application based on the new proposed method and
data sent by the OPC UA Client application, available at:
http://vps.impromedia.ro/dataimage/index.html

[4] Airehrour D., Gutierrez J., Ray S.K., Secure routing for
internet of things: A survey. J. Netw. Comput. Appl. 2016

[5] Deac G.C. – Patent application no. A 2017 00174 entitled
Method and Online Encryption System, Transmitting
Storage and Reading of Large Data Volumes (OSIM).

[6] The Center of OPC Solutions: http://opchub.com.
[7] Podnar Žarko I., Broering A., Soursos S., Serrano M.

Interoperability and Open-Source Solutions for the
Internet of Things. InterOSS-IoT 2016. Lecture Notes in
Computer Science, vol 10218. Springer, Cham, 2017.

[8] Open 62541 Docs:
 https://open62541.org/doc/current/

[9] IEE754:
https://en.wikipedia.org/wiki/IEEE_754.

[10] Encoding/Decoding experimental application:
https://transmissiongate.com/dataimage/index.

html.

