

Proceedings in Manufacturing Systems, Volume 14, Issue 3, 2019, 85-90

ISSN 2067-9238

PID CONTROL WITH CUSTOM CONTROLLER FIRMWARE
FOR BRUSHED DC MOTORS

Cozmin CRISTOIU1,*, Mario IVAN2, George DEAC3, Robert NASTASE4,

1) Assist. Prof., PhD Student, Robotics and Production Systems Department, University "Politehnica" of Bucharest, Romania

2) Lecturer, PhD., Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania
3) Student, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania
4) Student, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania

Abstract: The paper presents the conceptual design, virtual prototype achievement and the real physical
system implementation of a test stand for electric motor cascading PID control using a modified firmware
version of an ODrive motor controller in order to control both, brushless and brushed DC electric
motors. The goal of this firmware update and of the tests that are presented in the paper is to show that
this new firmware upgrade allows brushed DC motors to be PID controlled by the ODrive controller
board and not only the brushless motors for which the board was initially developed. The project was
developed in four stages. During the first stage the core system components – the brushed DC motor, the
controller and the encoder – were integrated and the issue of correct impulse reading was addressed.
During the second stage the experimental stand was built. In the third stage, the PID control algorithm
was implemented. The fourth stage consisted of measurements regarding the angular accuracy of the
motor spindle positioning using the previously developed algorithm. The initial version of the controller
board is dedicated only to brushless motors, but with current firmware upgrade the cheaper brushed
motors can be PID controlled proficiently. The firmware upgrade will also allow low latency force-
feedback that will allow future improvements and control optimization. Results from testing of the
positioning closed loop control are presented.

Key words: Brushed motor, Brushless motor, cascading PID, motor controller, position control, force

feedback.

1. INTRODUCTION

PID (proportional integrative derivative) are closed
loops that are widely used in industry and not only for
systems that use electric motors. The control loop is
continuously calculating an error value e(t) as the
difference between a desired setpoint r(t) and a measured
process variable y(t), and applies a correction based on
proportional, integral and derivative terms [1]. The
classic PID control diagram is shown in Fig. 1 [2].

The general form of the control signal given by a PID
controller has the following mathematical form:

  
t

d

dt

tde
KddeiKitepKptu

0

)(
)()()( . (1)

Where Kp, Ki, Kd are a set of parameters used to tune
the strength of the P, I and D parameters of the
controller. Nowadays there are more architectures of PID
(based on same principles) like: feedback (classic),
feedforward and cascading.1

* Corresponding author: Splaiul Independentei 313, Bucharest,
Romania
Tel.: 0742133392;
E-mail addresses: cozmin.cristoiu@gmail.com (C. Cristoiu),
andrei.mario@yahoo.com (M. Ivan), george.deac@impromedia.ro
(G. Deac),

Regardless of the architecture, the key of a good
control of a system consists in the fine tuning of the three
parameters.

The ODrive motor controller board is a cascaded
style position, velocity and current control loop, as
shown in Fig. 2 [3]. This flexibility is essential as it
allows the ODrive to be used to control all kinds of
mechanical systems. The advantages of the ODrive board
are linked to the fact that it is open source (both hardware
and software), affordable and offers high performance
control for robotics and brushless motors. The initial
ODrive board is dedicated for brushless DC motor
control in association with rotational encoders (optical
incremental or HAL sensors). A typical setup for
brushless motor control is shown in Fig. 3 [3]. In this
setup, the Odrive (shown in Fig. 4 [4]) is communicating
with the ESP32 interfacing microcontroller (shown in
Fig. 5 [5]) via UART using its proprietary ASCII
protocol implemented on the fiber abstraction layer
which also handles the communication with the PC via
the virtual USB serial port. The Odrive is also connected
to the optical encoder via the dedicated axis. A, B, Z pins
and the motor leads are coupled to the last two phases of
the axis. The board pinouts are configured as shown in
Fig. 4 [4].

86 C. Cristoiu, M. Ivan, G. Deac and R. Năstase / Proceedings in Manufacturing Systems, Vol. 14, Iss. 3, 2019 / 8590

Fig. 1. Classic PID control loop [2].

Fig. 2. ODrive board motor controller loop [3].

Fig. 3. Brushless motor setup [3].

Fig. 4. Odrive board layout [4].

 C. Cristoiu, M. Ivan, G. Deac and R. Năstase / Proceedings in Manufacturing Systems, Vol. 14, Iss. 3, 2019 / 8590 87

Fig. 5. ESP32 Dev Kit board layout [5].

The purpose of this paper is to present the methods
applied in order to upgrade the boards’ firmware with the
goal of extending its functionality and compatibility with
the cheaper brushed DC motors.

2. FIRMWARE UPGRADE

The core subject of the paper consists in the new
firmware upgrade. Unlike the original version of the
controller board that is designed only for control of
brushless motors, this new upgrade allows also for more
cheaper brushed DC motors to be proficiently controlled
through PID. In order for the controller to work with
brushed motors, the original firmware state machine
needed to be modified with the specific entries in the
following enumerations marked by (*):

 Motor Types:
0. High current (default);
1. Low current (not implemented yet);
2. Gimbal;
3. (*) Brushed current;
4. (*) Brushed voltage (this one is used currently);

 Current State:
0. Undefined state (will fall through to idle);
1. Idle state (disable PWM and do nothing);
2. Startup Sequence (the actual sequence is defined

by the config.startup_ flags);
3. Full calibration sequence (run all calibration

procedures, then idle);
4. Motor calibration (run motor calibration);
5. Sensorless control (run sensorless control);
6. Encoder index search (run encoder index search);
7. Encoder offset calibration (run encoder offset

calibration);
8. Closed loop control (run closed loop control);
9. Axis lockspin (lockin spin);
10. Encoder direction find;
11. (*) Brushed current control (not implemented);

12. (*) Brushed voltage control (run open loop
brushed voltage control).

The main modifications to the principal subroutines
of the firmware consist in: skipping the calibration
procedure if the motor type is set accordingly for brushed
motors, forcing a null encoder offset and implementing a
custom voltage timings function to drive and equilibrate
2 required phases out of the 3 phases on the axis.

Moreover, the ASCII protocol logic was also
modified to facilitate faster response times and decreased
latency for providing better force feedback. Thus, a
dedicated command was integrated for the current
comprised of only one character for faster serial
communication and for the structure of the lookup table,
hash map and ordered map were tested instead of the
previously slow else/if chains.

For a typical communication scenario where the
ESP32 microcontroller requires the current intensity
from the Odrive, there are 3 types of latency involved:
the initial packet transmission time for requesting the
current, the lag caused by the replying processor (Odrive)
overhead, the replied packet transmission time which
holds the current value and the receiving processor
overhead (ESP32). The last overhead represents the
smallest one and typically can’t be further improved, so
is the replied packet transmission time which only
comprises a value. This implementation tackles to
improve the transmission time of the initial packet and
the replying processor overhead. An expected time
duration of a force feedback communication is composed
as follows:

 10bit/symbol (there is a start and a stop bit + 1byte
word);

 11 5200 baud rate UART => 115200 bit/sec =>
0.0086 ms/bit;

 Initial packet for requesting the current value = “r
axis0.motor.current_control.Iq_measured\n” = 42
symbols = 420 bit / 11 5200 bit/sec = 3.65 ms;

88 C. Cristoiu, M. Ivan, G. Deac and R. Năstase / Proceedings in Manufacturing Systems, Vol. 14, Iss. 3, 2019 / 8590

Fig. 6. ODrive board motor controller cascading PID.

 Replied packet containing the current value = 10
symbols = 100 bit / 115200 bit/sec = 0.87 ms;

 Average communication time = Packet transmission
time + Reply processor overhead (Odrive) + Reply
transmission time + Receive processor overhead
(ESP32).
The default transmission duration is around 5 ms.In

conjunction with the communication latency, the actual
delay also encompasses the access time of the else/if
chains present in the command interpreter which
represents the most overhead of the replying processor,
in O(N) in time complexity, thus the access time grows.
linearly to the number of entries in the protocol. The
introduction of a hash map which is O(1) time
complexity for access or an ordered map, of O(logN)
complexity, will further improve the speed by reducing
the reply processor overhead.

The mathematical relations for the position loop,
velocity loop and current loop are transposed in firmware
code as follows:
 Positioning loop:

pos_error = pos_setpoint - pos_feedback
vel_cmd = pos_error * pos_gain + vel_feedforward.

 Velocity loop:

vel_error = vel_cmd - vel_feedback
current_integral += vel_error * vel_integrator_gain
current_cmd = vel_error * vel_gain +
current_integral + current_feedforward.

 Current loop:

current_error = current_cmd - current_fb
voltage_integral += current_error
current_integrator_gain
voltage_cmd = current_error * current_gain +
voltage_integral (+ voltage_feedforward when we
have motor model).

Tuning the motor controller is an essential step to

unlock the full potential of the ODrive. Tuning allows for
the controller to quickly respond to disturbances or
changes in the system (such as an external force being
applied or a change in the setpoint) without becoming
unstable.

Correctly setting the three tuning parameters (called
gains) ensures that ODrive can control your motors in the
most effective way possible, as shown in Fig. 6. For now,

gain values were determined empirically [6], only by
manual trials for gain factors values until visible
improvements could be observed. The gain values
determined were set up via controller interface using the
following command lines:

<axis>.controller.config.pos_gain = 100
<axis>.controller.config.vel_gain = 0.0005
<axis>.controller.config.vel_integrator_gain =
0.00005

The startup procedure usually requires running the

motor calibration sequence. In this case, since we use a
brushed motor and the commutation is done
mechanically an automatic calibration of the motor is not
required and therefore it’s skipped.

3. EXPERIMENTAL STAND

The test stand is shown in Fig. 7 and it includes:
Odrive controller board (with the upgraded firmware),
brushed DC motor R406-011E Sanio Denki, incremental
optical encoder 1000PKVF3 P1215 with a resolution of
4000 pulses per revolution (also known as counts per
revolutions or "cpr"), mounting board and 3D printing
brackets with indicator and protractor, additional ESP32
microcontroller, and adjustable power supply.

Key electrical, mechanical and electromagnetic
specifications of the used motor and the controller board
are presented in Table 1 and Table 2.

The encoder is assembled on the motor back shaft
and both are wired into the corresponding pins of the
ODrive board. The ESP32 microcontroller is
communicating via UART serial with the ODrive board
and is responsible with the displaying and interfacing of
the system. During testing, commands are sent to the
microcontroller and drive board from a PC via the virtual
serial on the fibre abstraction layer.

Table 1
Motor specifications

Nominal Power 60W
Rated Torque 0.19 Nm
Rated Current 1.4 A
Rated Speed 3000 rpm
Max Speed 5000 rpm
Max angular acceleration 111x103 rad/s2

Rotor inertia 0.0108x10-3 kg·m2
Armature inductance 4.4 mH

 C. Cristoiu, M. Ivan, G. Deac and R. Năstase / Proceedings in Manufacturing Systems, Vol. 14, Iss. 3, 2019 / 8590 89

Table 2
ODrive board specifications

Control 2 motors

Voltage 24 V

Peak
current

>100A per motor

Braking
modes

Brake resistor and regenerative braking

Interfaces USB, Step/direction, UART, Servo PWM,
PPM, CAN, digital and analog pins.

Protocol Goto (positioning control with trajectory
planning), Position command, Velocity
command, Torque command

Fig. 7. Test stand.

4. EXPERIMENTAL PROCEDURES

For each test, a number of full revolutions was
configured through the controller. The number of
revolutions was set sequentially at 10, 100, 1000 and
1000, and for each number of revolutions the
measurements were conducted using different speeds
(20%, 40% and 60% of the motor rated speed). The
motion control test was set to measure angular deviation
from the programmed position (Δα) at the end of each
series of revolutions (after the motor spindle stopped
spinning). The positioning repeatability was measured in
each case. The unit of measurement was converted from
encoder pulses (technically known as "counts") to
degrees for expressing the deviation in an absolute way
for any system.

 /count.

rev
counts





 090

4000

360
]θ[. (2)

The tests were repeated twice, first time without
trapezoidal trajectory (with speed variation slopes in our

case set up in order to reach the maximum velocity in 0,5
seconds and a braking time from maximum velocity to
full stop also in 0.5 seconds) and second time with
trapezoidal trajectory enabled. The angular acceleration
and deceleration (acc, dec) were set double compared to
the angular velocity in order to constrain the acceleration
(tacc) time to 0.5 sec. Experimental values are presented
in the following chapter.

5. RESULTS

Following the experimental procedures described
above, a set of experimental results were obtained. The
test results seem to closely follow an ordered logarithmic
pattern, as shown in Table 3 and Table 4.

In order to properly analyze the obtained
experimental data, the results shown in the above tables
were structured in diagram form, showing the evolution
of the angular error (Δα) with respect to the number of
motor spindle revolutions performed. The diagrams are
showed in Fig. 8 – for the analysis of repeatability
without trapezoidal trajectory – and Fig. 9 – for the
analysis of repeatability with trapezoidal trajectory.

From both previously provided tables it can be
observed that the compensation trend in the first row
with 10 rev increments tends to undershoot, whilst in all
the other cases there is a logarithmically increasing
overshoot error trend which starts to plateau faster in the
outer speed regions (20%, 60%). Meanwhile, the middle
speed region (40%) shows a wider error variation
tolerance.

Moreover, by comparing the similarity of error
curves, it is shown that the main causative factor of the
errors is the improper empirical PID tuning, since the
results are similar, independently of the chosen trajectory
generation scheme.

To conclude, this test is essential in showing potential
deviations that are caused outside the PID positioning
control loops. These can be in the form of an improper

Table 3

Repeatability without trapezoidal trajectory

Rev
Error Δα [deg]

Speed 20% Speed 40% Speed 60%

10 −0.99 −0.81 −0.81

100 3.51 3.78 3.87

1000 6.3 5.13 16.2

10000 7.38 11.88 18.36

Table 4

Repeatability with trapezoidal trajectory

Rev
Error Δα [deg]

Speed 20% Speed 40% Speed 60%

10 −1.17 −0.09 −0.45

100 3.69 3.96 3.42

1000 6.75 5.94 17.46

10000 7.83 11.43 18.9

90 C. Cristoiu, M. Ivan, G. Deac and R. Năstase / Proceedings in Manufacturing Systems, Vol. 14, Iss. 3, 2019 / 8590

Fig. 8. Diagram showing the correspondence between the
angular positioning error and the number of motor spindle

revolutions (without trapezoidal trajectory).

Fig. 9. Diagram showing the correspondence between the
angular positioning error and the number of motor spindle

revolutions (with trapezoidal trajectory).

field-oriented control (FOC) commutation [7] or
potential causes influenced by variation in the inertial
loading profile of each trajectory type. For instance, a
rectangular trajectory has by far the highest inertia peaks,
while in the case of a trapezoidal or S-shaped trajectory
the inertial loading is evenly distributed in time) such as
mechanical problems.

6. CONCLUSIONS

The first conclusion that can be drawn from the
research presented in this paper is that PID control can
also be achieved with brushed DC motors. This is an
important aspect due to the fact that the brushed motors
are affordable, can be integrated with simple and
accessible controllers and have good behavior in extreme
environments.

Because no motor calibration is performed, the
configuration of the Kp, Ki and Kd parameters has to be
done after a more thorough analysis. Also, the actual
settings using empirically configured factors seem to
generate good results only for fewer motor spindle
rotations (around the value of 100 revolutions). It is
clearly that the manual setup of the gain factors have to
be more fine-tuned in order to obtain better precision
values thus not affecting the promptitude of the system.
measured angular errors (which can be seen in Tables 1

and 2, and also in Figs. 8 and 9) could be influenced by
the fact that the configuration of the PID parameters was
performed only for certain current and speed limits (40
000 counts per second).

The experimental results showed in the above tables
were measured during the tests by reading the encoder
values immediately after the motor spindle stopped
spinning. For every measurement obtained in this way it
could be observed that the PID function was still
adjusting the position of the motor spindle several
seconds after the rotation stopped (a slow adjustment
rate), showing once again that the PID parameters should
be further optimized for a quicker adjustment (the main
objective being an adjustment that should be completely
achieved immediately after the motor spindle stopped
spinning).

The research project presented in this paper has good
potential for further development. The next stage of this
work will be focused on developing an algorithm that
will provide the ability to automatically adjust the PID
parameters for brushed DC motor control. This capability
will have a significant impact in the research field,
eliminating the requirement of PID parameter
configuration.

A second objective for future research development
will be the integration of force feedback options, which
will allow the PID control to continuously adapt to work
environment changes and also provide a research path
toward using PID control in interactive systems. The
force feedback requires additional experimentation using
an oscilloscope to precisely determine the
communication time improvements by analyzing each
transmitted packet time domain and the corresponding
delay between them.

REFERENCES

[1] M. Alboelhassan, A Proportional Integral Derivative
(PID) Feedback Control without a Subsidiary Speed Loop,
Acta Polytechnica, Vol. 48, No. 3/2008, Czech Technical
University in Prague.

[2] A. Urquizo, PID Controller, Wikipedia, the Free
Encyclopedia, 2011, available online:
https://en.wikipedia.org/wiki/PID_controller
accessed on 30 March 2018.

[3] ***
https://docs.odriverobotics.com/control.html.

[4] ***
 https://github.com/madcowswe/ODriveHardware.
[5] *** https://randomnerdtutorials.com/wp-

content/uploads/2018/08/ESP32-DOIT-DEVKIT-
V1-Board-Pinout-36-GPIOs-Copy-768x554.jpg

[6] J.G. Ziegler, N.B. Nichols Optimum Settings for Automatic
Controllers, Transactions of the A.S.M.E., November
1942.

[7] *** https://en.wikipedia.org/wiki/
 Vector_control_(motor).

