
  

 
 

 
Proceedings in Manufacturing Systems, Volume 13, Issue 3, 2020, 127-133 

 

 
ISSN 2067-9238 

 
 

SOFTWARE DEVELOPMENT FOR OPTIMIZING THE PALLETIZING  
PROCESS OF KLT CRATES  

 
Victor IOSUB1,*, Adrian Florin NICOLESCU2, Cristina PUPĂZĂ3 

 
1) Eng.. PhD Student, Robotic Specialist, Development and Production Department, Robital Industrial Supplier SRL, Bucharest, Romania 

2) 3) PhD, Prof., Robots and Manufacturing Systems Department., University "Politehnica" of Bucharest, Romania 

 
 

Abstract: The paper presents the current development of a new software interface for optimizing the 
palletizing process of the KLT crates. The algorithm generates a text file with the coordinates of each box 
that will be placed on the pallet. Furthermore, the file is than loaded in the robot controller for changing 
the palletizing format. The novelty of the research consists in the software developed using Visual Studio 
IDE and programmed in C# language. At this stage of the development, the resulting file is loaded in the 
offline programming and simulating software for Kawasaki Robots, K-ROSET. The research also 
comprises an overview of the concepts, a test case, and a virtual robotic cell designed in K-ROSET. The 
virtual model of a palletizing cell was also included. 
 
Key words: palletizing software, optimizing palletizing, offline simulation, C# language, algorithm. 
 

1.  INTRODUCTION 1 
 

Palletization is the operation of arranging in a 
volumetric order, horizontally ‒ in the form of layers 
with homogeneous height and vertically ‒ in the form of 
multiple layers on transport devices called pallets, of 
different categories of objects, such as: products packed 
in cardboard boxes with parallelepiped shape, bags with 
light materials such as granules or powders, sets of 
multiple pre-wrapped objects ‒ water / oil bottles, etc., 
handled individually or in groups by industrial robots or 
automatic palletizing machines [1]. In order to facilitate 
the unification of storage, transport and handling 
conditions, the palletizing operation is performed on 
pallets with dimensions controlled by international 
standards. 

Small load crates (Kleinladungsträger ‒ KLT) are 
mainly used in the automotive industry for easy storage 
and transport of the components. The containers were 
developed with the aim of unifying and standardizing 
load carriers for automatic handling on conveyor lines. 
As the automotive industry is on a continuous growth 
there is a special need for fast implementation times of 
new palletizing patterns. 
 
2.  STATE OF ART 
 

Literature overview on this topic clearly proved that 
big companies already worked on optimization and 
generalization of the palletizing procedures, but none has 
developed a general solution that can work with all 
brands of industrial robots.  
                                                           

 

* Corresponding author: 313 Splaiul Independentei Avenue, 
Bucharest, RO-060042  
Tel.: +40726499591; 
E-mail addresses: iosubvictor@gmail.com (V. Iosub), 
afnicolescu@yahoo.com (A. F. Nicolescu), 
cristina.pupaza@upb.ro (C. Pupăză) 

Palletizing algorithms deal with the so-called pallet 
loading problem (PLP). The goal is to determine the 
optimal placement of a set of parallelepiped boxes on a 
rectangular surface (pallet). The problem involves 
placing a maximum number of rectangular boxes in a 
single rectangular pallet. In an intensive numerical 
experiment that included 196,557 instances Birgin et al. 
[2] obtained the optimal solutions in 99.5% of the cases, 
while the computation time per instance was only 4 
seconds. For the MPLP problem, when placing a 
maximum number of boxes on a pallet, geometrical 
restrictions must be considered. The boxes have to be 
orthogonally arranged ‒ the sides of the boxes are 
parallel to the sides of the pallet ‒ and they do not have 
to overlap. The boxes can be rotated by 90. The vertical 
orientation of the boxes is fixed. Then, after solving the 
reduced problem (in 2D dimension), the 3D problem can 
be implemented. Despite its simple structure, based on 
the work of Fowler et al. [3], the MPLP problem was 
subsequently classified as an NP-complete problem by 
Dowsland [4]. Other authors have adopted this 
classification [5, 6]. When considering the decision 
version of the pallet loading problem and answer the 
question whether n boxes can be placed, most of the 
existing algorithms perform a search through a tree of 
possible loading patterns. Thus, it brings an exponential 
complexity and a worst-case scenario in terms of the 
execution time. On the other hand, there are still doubts 
about the MPLP problem as an NP ‒ complete problem. 
These uncertainties are sustained by the fact that even in 
the cases when pallets must be loaded with a large 
number of small boxes they have to be solved within a 
reasonable computational time. Apart from these 
observations, there are also some theoretical arguments 
regarding the classification of the problem. For example, 
Nelissen [7] and Alvarez-Valdes et al. [8] have pointed 
out that solving any instance of the MPLP needs 4 
integer parameters: the length and the width of the pallet, 



128 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133  

 

respectively the length and the width of the box, which is 
uncommon for NP-type problems. Nelissen [7] even 
doubted that the MPLP problem is included in the NP 
problem class. If the problem is transformed into a 
decision problem, so if it is possible to load n boxes on 
the pallet, assuming that it is only possible to process a 
fixed percentage of n boxes at a constant time, then the 
time required to resolve the input string for a Turing 
machine is not polynomial. Thus, Nelissen concluded 
that the complexity of the MPLP problem is unknown. In 
fact, this is the research level also achieved by Birgin et 
al. [9], Letchford and Amaral [10], Martins and Dell 
[11], Morabito and Morales [12], Young-Gun and 
Maing-Kyu [13]. 

At present, most of the software packages that 
optimize the robotic palletizing processes offer, in 
addition to the creation of the optimal pallet loading 
scheme also the computation of the optimal dimensions 
of the secondary packaging, based on the size of the 
products that have to be palletized, as well as the optimal 
loading of the container, or the transport truck, 
respectively.  

Thus, these packages have become complex utilities 
through which the entire logistics chain of a company 
can be generated, thus dramatically reducing the 
transport and packaging costs. However, even though the 
software procedures greatly evolved, still none of them 
generate the optimal solution for uploading. This is due 
to the pallet loading problem (PLP) is an NP-tough 
problem that means an acceptable non-deterministic 
polynomial problem. All the developed packages use 
heuristic algorithms. Therefore, there is a great need of 
investigation in this field to improve the existing 
algorithms or for developing new algorithms that can 
solve the PLP problem by obtaining solutions close to the 
optimal solution in a reasonable amount of time. 
Furthermore, the software packages that are available on 
the market also offer the possibility to calculate container 
fill with pallets. The deep drawback of these packages is 
that they do not allow a direct interface between the 
optimized solution and the robotic palletizing system. 
Figure 1 illustrates one of the software packages on the 
market.  

 

Fig. 1. Example GUI of Quick Pallet Maker 4.8.3 [14]. 
 
Since actual solutions emerged from big enterprises, 

they are not affordable for small and medium companies. 
The current procedure is focused on universal boxes and 
not devoted only to KLT crates that are so widely used. 

The main advantage is that it gives the opportunity to 
determine the optimal loading of the pallet starting from 
both the dimensions of the boxes that need to be 
palletized and the dimensions of the used pallet. 
 
3.  PALLETIZING CELL DESCRIPTION 
 

The layout of a robotic palletizing cell was completed 
in a 2D format in Draft Sight software and the 3D model 
was generated in SolidWorks 2018 environment. This 
cell was employed to test the actual development of the 
original interface. A circular arrangement of the pallet 
and separator storages around the robot was chosen. The 
system includes (Fig. 2):  
  semi-automatic cardboard box forming machine; 
  manual box loading station; 
  an automatic carton closing machine; 
 automatic printers; 
  transport & transfer systems in the form of straight 

and curved roller and belt conveyors;  
  final roller inlet conveyors;  
  Kawasaki CP180L robot;  
  an Europallet stacker;  

 

           
a                                                                                                               b  

 
Fig. 2. Robotic cell layout: a ‒ general layout; b ‒ details on the main component location. 



 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133 129 

 

 
 
 

  
Fig. 3. Schematic view of the concept. 

 
  a block pallet stacker;  
  separator for separators;  
  roller conveyors for exiting the palletizing cell;  
  a perimeter protection barrier.  

Figure 2 shows the overall description of the cell, as 
well as a detail with the components location. 
 
4.  CONCEPTUAL APPROACH 
 

The core idea was to develop a compatible solution 
with the ones already available on the market, but with 
reliable improvements regarding the link and the 
interface between the solution and the robotic palletizing 
system. 

The software was developed aiming its versatility and 
generality, so that it can work with any robotic brand 
used in the palletizing system. It is a solution oriented to 
small and medium sized companies that use industrial 
robots for palletizing and begin with only KLT crates. 

Figure 3 gives a schematic representation of the 
concept. As it can be noticed the application itself is an 
interface between the operator and various brands of 
industrial robots. The user has to introduce first the initial 
data such as: the dimensions of the KLT crates, the size 
of the pallet and number of layers. The software then 
processes the data and respects the constraints necessary 
to have an adequate load on the pallet and presents the 
optimal solution. 

If the result is satisfactory, the user can export a text 
file containing the solution and can further upload it to 
the robot controller. Otherwise, a session restart may be 
proceeded, and the modification of the initial parameters 
is launched to reach another variant. The export text file 
can also be loaded in an off-line programming and 
simulation software to be verified prior to commissioning 
on the actual production line. 
 
5.  THE PROCEDURE 
 

The software procedure is in the test stage. It is 
written in C# programming language and uses a 
Microsoft IDE Visual Studio environment.  

Because a 3D display area is required for the 
optimized solution, a Microsoft scheme ‒ Windows 
Presentation Foundation (WPF) for rendering interfaces 
has been employed. This graphical user interface (GUI) 
consists in two main areas. One is the input data area that 
offers the operator the capability to set up his constraints 
and enter the required data and the second area is the 3D 
area in which the rendered solution is presented.  

In the robotic cell (Fig. 2) the crates are already 
oriented in the same position on the long side of the 
pallet. Even if the crates are of different dimension types,  

 
 

Fig. 4. 3D generation of a cube. 
 

the orientation on the pallet side is the same. At this stage 
of the software development the center of gravity of the 
whole package was not included in the model, but this 
assumption does not affect the present algorithm.  

The first step was to determine how to generate 
multiple 3D parallelepipeds based on the input data runs 
throughout the algorithm. Generally, in 3D computer 
graphics the shape of polyhedral objects is defined by a 
polygon mesh. The polygon mesh is a collection of 
vertices, edges and faces. To simplify the rendering 
process, a triangle face was used because it is the 
simplest geometrical shape. 

For a better understanding of the concept, Fig. 4 
presents the generation of the cube faces, with only 
triangles in the 3D environment. The cube is described 
by 8 points that define vertices and 6 faces, each one 
defined by two triangles. 

The algorithm starts with the definition of a function 
that returns the cross product of two vectors (Algorithm 
1). The input data for this function are the three 3D 
points, p0, p1 and p2. The function generates two vectors 
between point p0 and p1, and between point p1 and p2, 
respectively. Then it also returns the cross product of 
these two vectors resulting a triangle. Algorithm 1 is an 
extract of the source code of this function. 
 

Algorithm 1. Code of initial function 
 
private Vector3D calculateTriangle(Point3D p0, 
Point3D p1, Point3D p2) 
{ 

Vector3D v0 = new Vector3D(p1.X - p0.X, p1.Y 
- p0.Y, p1.Z - p0.Z); 
       Vector3D v1 = new Vector3D(p2.X - p1.X, p2.Y 
- p1.Y, p2.Z - p1.Z); 
       return Vector3D.CrossProduct(v0, v1); 
} 

 After the triangle position in the 3D space was 
performed a material was assigned, to be rendered. For 
this purpose, another function was developed (Algorithm 
2).  

The function takes as parameters the three 3D points 
that correspond to the position of the triangle, creates a 
mesh between those points, assigns a material (a solid 
blue color) and adds it to the final model. 

The last step is to group all the twelve triangles at the 
corresponding position, so a parallelepiped object is 
generated. To create the box, the length, the width and 
height of the box as well as its origin on all three axes 
have to be considered as parameters. This last function 
can  basically  generate  a  stack  of boxes in a parametric 

 



130 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133  

 

 
 
 
 

 
 
 
 

Algorithm 2. Code of second function 
 
private Model3DGroup createTriangleModel(Point3D p0, 
Point3D p1, Point3D p2) 
{ 

MeshGeometry3D mesh = new MeshGeometry3D(); 
       mesh.Positions.Add(p0); 
       mesh.Positions.Add(p1); 
       mesh.Positions.Add(p2); 
       mesh.TriangleIndices.Add(0); 
       mesh.TriangleIndices.Add(1); 
       mesh.TriangleIndices.Add(2); 
    Vector3D Normal = calculateTriangle(p0, p1, p2); 
       mesh.Normals.Add(Normal); 
       mesh.Normals.Add(Normal); 
       mesh.Normals.Add(Normal); 
    Material material = new DiffuseMaterial(new 
SolidColorBrush(Colors.Blue)); 
    GeometryModel3D model = new 
GeometryModel3D(mesh, material); 
       Model3DGroup group = new Model3DGroup(); 
       group.Children.Add(model); 
       return group; 
} 

 

Algorithm 3. Code of the third function 
 
private double generatebox(int l, int h, int L, 
double orgx, double orgy, double orgz) 
{ 
Model3DGroup cube = new Model3DGroup();       
Point3D p0 = new Point3D(orgx, orgz, orgy); 
Point3D p1 = new Point3D(orgx+l, orgz, orgy); 
Point3D p2 = new Point3D(orgx+l, orgz+h, orgy); 
Point3D p3 = new Point3D(orgx, orgz+h, orgy); 
Point3D p4 = new Point3D(orgx, orgz+h, orgy+L); 
Point3D p5 = new Point3D(orgx+l, orgz+h, orgy+L); 
Point3D p6 = new Point3D(orgx+l, orgz, orgy+L); 
Point3D p7 = new Point3D(orgx, orgz, orgy+L); 
// 
cube.Children.Add(createTriangleModel(p0, p2, p1)); 
cube.Children.Add(createTriangleModel(p0, p3, p2)); 
cube.Children.Add(createTriangleModel(p2, p3, p4)); 
cube.Children.Add(createTriangleModel(p2, p4, p5)); 
cube.Children.Add(createTriangleModel(p1, p2, p5)); 
cube.Children.Add(createTriangleModel(p1, p5, p6)); 
cube.Children.Add(createTriangleModel(p0, p7, p4)); 
cube.Children.Add(createTriangleModel(p0, p4, p3)); 
cube.Children.Add(createTriangleModel(p5, p4, p7)); 
cube.Children.Add(createTriangleModel(p5, p7, p6)); 
cube.Children.Add(createTriangleModel(p0, p6, p7)); 
cube.Children.Add(createTriangleModel(p0, p1, p6)); 
// 
ModelVisual3D model = new ModelVisual3D(); 
model.Content = cube; 
this.viewport3D.Children.Add(model); 
}   

 
mode, in a 3D environment by just calling this function. 
Therefore, a 3D visualization of a whole stack on the 
pallet based on the result of the algorithm can be 
performed. 

As it can be noticed from the source code (Algorithm 
3) the function creates the eight vertices of a cube in the 
correct positions, considering the input parameters and 
then generates the twelve triangles between the points. 

At the end, the cube is placed at the desired position 
in the 3D space. 
 To better understand how and when these functions 
are called, a simplified diagram of the algorithm is 
illustrated in Fig. 4. The first action is an initialization of  

all elements (variables, functions, etc.). After pressing 
the "Generate" button, the packaging algorithm is 
executed. Then, using the solutions given by the 
algorithm a generate-box function is called. This one 
employs the create-triangles and calculate-triangle 
functions for an appropriate operation. In the end the 3D 
visualization procedure is performed. 

To realistically view the 3D objects the model was 
rendered adding extra light and a camera (Algorithm 4). 
This is an initializing section. A comment was left at 
each line to fully understand the procedure. This is the 
whole 3D motor of the application. 

 

 
 

Fig. 4. The algorithm. 

 



 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133 131 

 

 
 

 
 

Fig. 5. Application interface. 
 
 
Algorithm 4. Code of fourth function 
 
public MainWindow() 
{ 

InitializeComponent(); 
//Import the pallet 3D model 
ModelImporter importer = new ModelImporter(); 

       pallet = importer.Load(@"E:\Visual 
Studio\PalletMaker\PalletMaker\3D_models\Pallet.obj"
); 

// Defines the camera used to view the 3D 
object 
       PerspectiveCamera myPCamera = new 
PerspectiveCamera(); 

// Specify where in the 3D scene the camera 
is. 
       myPCamera.Position = new Point3D(1, 1, 1); 

// Specify the direction that the camera is 
pointing. 
            myPCamera.LookDirection = new Vector3D(-
1, -1, -1); 

// Define camera's horizontal field of view 
in degrees. 
       myPCamera.FieldOfView = 75; 

// Asign the camera to the viewport 
       viewport3D.Camera = myPCamera;  
} 

 
 
 
 
 
 

Another stage of the software development was the 
initialization of the user interface (which is still in 
progress) (Fig. 5). The interface is split in two main 
areas: the data input area and the visualization one. For 
the current state of development, the user needs to 
choose between the two standard dimensions of KLT 
crates, the level number of the pallet and enter the crate 
weight. The weight of the crate is also needed to 
calculate the total weight of the products and to compare 
it with the euro pallet loading limit. If the limit is 
exceeded, the application pops-up an error message 
telling the user that the number of entered layers is too 
big for the total weight and this number needs to be 
changed. 
 The final step of the development was to establish the 
appropriate way to export the obtained result. A simple 
text file was chosen because it is the most convenient 
format. As such, the application creates a text file in 
which it writes the marker of the box and the coordinates 
of the origin for each box, in millimeters, on X, Y and Z 
axes. An extract of a file exported from the application 
is:  

  
 
The data included in the export file has to be 

previously interpreted, in order to be used in all brands of 
robot’s programming software. 
 
5.  SOFTWARE TESTING 
 

At this point of the research a test for the whole 
concept has been performed. The test resides in the 
transfer of the application output file to the robot 
software and the execution of the code.  

This has been performed employing the offline 
programming and simulation software K-ROSET from 
Kawasaki. For this purpose, a small palletizing procedure 
was written and executed. 

A virtual robotic cell with pick positions and drop 
positions for the pallets and the crates was designed. The 
cell includes three picking lines of crates from the input 
conveyors and three dropping areas, corresponding to the 
pallet’s locations on the output conveyors. The objects 
that are in the cell were created in SolidWorks and then 
imported in the simulation software using a STL file, 
which is a general format that can be interpreted by K-
ROSET. The cell was designed to work for 
simultaneously completion of three different pallet 
stacks. The IR teach-in is done by the operator one time 
for first layer from each pallet to obtain the individual 
palletizing scheme. 

The crates are coming into the robotic palletizing cell 
on three different conveyors from the packaging area. All 
the conveyors are conveniently aligned next to the robot, 
which is placed on a pedestal for a favorable positioning 
scheme of the robot working space versus the served 
palletizing stations. The robot can handle two types of 
pallets (Euro pallet and 1200 mm × 1000 mm BLOK 
pallet) supplied from two dispensing units and place 
them on the output roller conveyors, in three palletizing 
station with different specific locations. After the pallets 
are loaded, the palletizing process is started in respect 
with the data obtained from the developed software by 
picking crates from each line and placing them on the 
corresponding pallet. When the full set of palletizing 
layers was completed for each pallet, the system 
evacuates individually the pallets.  

Figure 6 illustrates a snapshot of the K-ROSET 
software with the 3D model of the designed robotic cell. 
The software has the capability to simulate the whole 
functionality of the robot, checking the accuracy of the 
TCP positions obtained from the software, as well as to 
ensure the virtual commissioning of the entire system. 

Another robot software procedure was written to 
interpret and to employ the data exported from the main 
PC trough the K-ROSET software. The snapshot bellow 
is an extract from the robot code that is working based on 
the file exported from the developed application. 

It can be noticed that if the crate number is 0, the 
position for dropping it is the first position that is 
manually saved in the robot memory by the programmer. 

 

                                                                      



132 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133  

 

 
 

 
 

 
Fig. 6. Virtual robotic cell design in K-ROSET.  

 
Algorithm 5. Extract from robot code 

LMOVE #preluareL3 
TWAIT 0.5 
SIGNAL -10,9 
TWAIT 0.5 
SIGNAL 2008 
LDEPART 1500 
; 
  IF levell1==0 THEN 
    IF cutiel1==0 THEN 
      POINT depunere = #cutieL1 
    END 
    IF cutiel1==1 THEN 
      POINT place = #cutieL1 
      POINT depunere = SHIFT(place BY 410,0,0) 
    END 
    IF cutiel1==2 THEN 
      POINT place = #cutieL1 
      POINT depunere = SHIFT(place BY 0,310,0) 
    END 
    IF cutiel1==3 THEN 
      POINT place = #cutieL1 
      POINT depunere = SHIFT(place BY 410,310,0) 
    END 
  END  

 
 
 
 

As the execution continues, the data collected in the 
file start to be used. If the crate number is one, it will be 
placed in the original first position, but this time shifted 
on the X axis with 410 mm, suggested by the imported 
file). For the crate number two the placing position is the 
original one, shifted with 310 mm on Y axis. The placing 
position of the crate number three is the original one, 
shifted with 410 mm on X axis and 310 mm on Y axis. A 
pattern of the execution in progress can be drew-up as 
shown in Algorithm 5. 

When reaching the next layer of the stack, the robot 
needs to shift the original position on the Z axis as well, 
so it can build the whole stack on the pallet. Bellow it is 
only an extract from the code for one of the crates of the 
second layer. Because the height of the crate is 210 mm, 
the first box of the second layer will increase the position 
location from the original one to a shifted one, but only 
on the Z axis, with 210 mm. Algorithm 6 illustrates an 
extract from the robot programming code for the second 
layer generation. 

Algorithm 6. Extract from robot code for the second 
layer 

  IF levell1==1 THEN 

    CASE cutiel1 OF 

     VALUE 0: 

      POINT place = #cutieL1 

      POINT depunere = SHIFT(place BY 0,0,210) 

     any: 

    END 

  END 
 

 
When simulating the functionality of the robot the 

obtained results proved a correct generation of the of the 
crates location coordinates. The calculation of the robot 
TCP corresponding position was accurately reached.  
 
 
6.  CONCLUSIONS 
 

The software procedure presented in this paper is 
basically developed for box’s storage, not only for the 
KLT crates that are widely used in the automotive 
industry. The main advantage of the software is that it 
automatically defines the optimal loading of the pallet 
starting from the dimensions of the boxes that need to be 
palletized and the dimensions of the used pallets. The 
actual developed version of the software operates with 
the same dimensions and orientation of the boxes for all 
stack layers and it perfectly fits the cumulated box’s 
dimensions and respectively the pallet dimensions. 

Work is in progress to generate the pallet stack for 
any palletizing scheme of the boxes on each layer. For 
this purpose a recursive algorithm will be used. Another 
further development is intended to be done for mixed 
palletizing which is the most complex problem regarding 
palletizing. The solution of the problem for this purpose 
is usually obtained from a heuristic algorithm. Future 
testing will involve optimized data implementation to a 
real robotic cell, similar with the proposed virtual model.  



 V. Iosub, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 127133 133 

 

REFERENCES 
 
[1] A.F. Nicolescu, Industrial robots implementing into 

production systems (in Romanian), Politehnica Press, 
ISBN 978-606-515-915-0, Bucharest, 2020 

[2] I.E Birgin, R.D. Lobato, R. Morabito, Generating 
unconstrained two-dimensional non-guillotine cutting 
patterns by a Recursive Partitioning Algorithm, Journal of 
the Operational Research Society, Vol. 63, No. 2, 2012, 
pp.83-200, DOI: 10.1057/jors.2011.6 

[3] R.J. Fowler, M.S. Paterson, S.L. Tanimoto, Optimal 
packing and covering in the plane are NP-complete. 
Information Processing Letters 12, 1981, pp. 133-137. 

[4] K.A. Dowsland, W.B. Dowsland, Packing problems 
European Journal of Operational Research, Vol. 56, Issue 
10,  January 1992, pp. 2-14. 

[5] Subir Bhattacharya, R. Roy, Sumita. Bhattacharya, An 
exact depth-first algorithm for the pallet loading problem, 
European Journal of Operational Research, Vol. 110, No. 
3, 1998, pp. 610-625, DOI: 10.1016/S0377-
2217(97)00272-5 

[6] V. Pureza, R. Morabito, Some experiments with a simple 
tabu search algorithm for the manufacturer's pallet 
loading problem, Computers and Operations Research, 
Vol. 33, No. 3, 2006, pp. 804-819, DOI: 
10.1016/j.cor.2004.08.009. 

[7] J. Nelissen, How to use structural constraints to compute 
an upper bound for the pallet loading problem. European 
Journal of Operational Research 84, 1995, pp. 662-680. 

[8] R. Alvarez-Valdes, F. Parreño, J.M. Tamarit, Reactive 
GRASP for the strip-packing problem, Computers & 
Operations Research, No. 35, 2008, pp. 1065-1083.  

[9]  E.G. Birgin, R. Morabito, F.H. Nishihara, A note on an L-
approach for solving the manufacturer’s pallet loading 
problem, Journal of the Operational Research Society, No.  
56, 2005, pp. 1448-1451. 

[10]  A. Letchford, A. Amaral, Analysis of upper bounds for the 
Pallet Loading Problem, European Journal of Operational 
Research, No. 132, 2000, pp. 582-593. 

[11] G.H.A Martins, R.F. Dell, Solving the pallet loading 
problem, European Journal of Operational Research, 
Volume 184, Issue 2, 16 January 2008, pp. 429-440. 

[12] R. Morabito, S. Morales, A simple and effective recursive 
procedure for the manufacturer's pallet loading problem, 
Journal of Operational Research Society, No. 49, 1998,   
pp. 819-828. 

[13] G. Young-Gun, K. Maing-Kyu, A fast algorithm for two-
dimensional pallet loading problems of large size, 
European Journal of Operational Research, No. 134, 2001, 
pp. 193-202. 

[14] Quick Pallet Maker, available at: https://quick-pallet-
maker.soft112.com/.

 


