

Proceedings in Manufacturing Systems, Volume 15, Issue 3, 2020, 135-146

ISSN 2067-9238

REINFORCEMENT LEARNING FOR ASSEMBLY ROBOTS: A REVIEW

Liliana STAN1,*, Adrian Florin NICOLESCU2, Cristina PUPĂZĂ2

1) PhD Student, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania
2) Prof., PhD, Robots and Manufacturing Systems Department, University "Politehnica" of Bucharest, Romania

Abstract: This paper provides a comprehensive introduction to Reinforcement Learning (RL), summarizes
recent developments that showed remarkable success, and discusses their potential implications for the
field of robotics. RL is a promising approach to develop hard-to-engineer adaptive solutions for complex
and diverse robotic tasks. In this paper RL core elements are reviewed, existing frameworks are presented,
and main issues that are limiting the application of RL for real-world robotics, such as sample inefficiency,
transfer learning, generalization, and reproducibility are discussed. Multiple research efforts are currently
being directed towards closing the sim-to-real gap and accomplish more efficient policy transfers methods,
making the agents/robots learn much faster and more efficiently. The focus of this work is to itemize the
various approaches and algorithms that center around the application of RL in robotics. Finally, an
overview of the current state-of-the-art RL methods is presented, along with the potential challenges, future
possibilities, and potential development directions.

Key words: reinforcement learning, robot arm, robotic vision, manipulation tasks.

1. INTRODUCTION

Reinforcement Learning (RL) has attracted a lot of
attention in recent years with breakthroughs in multiple
domains, including robotics.

Industry 4.0 is characterized by modularity, inter-
operability, and real-time capabilities. To address the
custom manufacturing demands, RL is a key catalyst for
turning an industrial robot which is designed for a fixed
and repetitive task into a ‘smart manipulator’, having the
capability to learn and perform a desired task without any
explicit task-specific controller. For that to happen,
present-day controllers must be augmented with learning-
based solutions for motion planning, trajectory tracking
control, collision avoidance, force control, and robotic
vision.

Recent studies show exciting progress for RL in
robotics. Deep Learning (DL) has been applied
successfully to many important problem areas, including
computer vision, robotics and RL. The current challenges
entail solutions for scaling up to complex tasks for robots,
designing robust policy representations, and optimizing
the computing time.

Precise, collision-free, trajectory tracking with optimal
control has been an active research area where progress is
needed to a great extent [1, 2, 3]. A vast amount of
research emerged for tracking applications using
manipulator arms, from simple tasks such as pick-and-
place [4], peg-in-hole [5], cloth folding [6], to more
complex tasks, such as tracking a trajectory on an irregular
surface in a multi-robot system while avoiding self-
collisions, and cooperative handling operations [7].

* Corresponding author: 313 Splaiul Independenței, Bucharest,
sector 6, Romania,
Tel.: +40720579271
E-mail addresses: elena_liliana.stan@stud.fiir.upb.ro (L. Stan)

Currently there are several active RL subfields of
research that enable breakthroughs in robotics with
regards to path planning, trajectory tracking control,
optimal control, robot impedance and force control,
compliance control, and robot vision such as object
tracking, pose estimation, and pattern recognition [8].
Promising RL tasks have also been presented addressing
the security and energy consumption of robots. In [9],
Bozkurt et al. addressed the problem of security-aware
robotic motion planning and Yin el al. proposed a machine
learning-based approach for energy-efficient trajectory
planning [10].

Despite these very promising results, applications of
RL to industrial robotics are currently rather limited, and
this can be attributed to the laborious efforts to setting-up
the learning framework based on recent research, and to
the lack of experimental evaluation of RL-based methods.

To address the problem of reproducibility of deep RL
research, Rupam et al. developed a learning task with an
UR5 robotic arm and discussed the key elements of real-
world task setups [11].

Robotic assembly is a manufacturing process in which
a robot (equipped with tailored end-effectors) positions,
mates, fits and assembles interchangeable parts or sub-
assemblies in a sequential manner resulting a functional
product (Fig. 1). This process requires a high degree of
repeatability, reliability, flexibility, and sequence
planning. Typical robot-assembly operations also require
compliance and force control that provide stable contact
between the manipulator and the workpiece.

Assembly sequences are predefined manually in the
traditional robotic-assembly systems. In the context of
smart factories, for a successfully assembled product, a
RL-based assembly approach should be able to plan the
correct sequences of assembly tasks, to plan individual,

136 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

Fig. 1. A typical setup of a robotic assembly cell.

collision-free movements, to calculate the required forces
and torques, and to estimate the pose of assembly parts.
Since different end-effectors (modular grippers, electric
screws, glue applicators, etc.) are needed in an assembly
process, knowing the correct sequence of assembly tasks,
the RL model should also make sure that the robot equips
the proper end-effectors. All these requirements raise
major difficulties for researchers, as robotic assembly
continues to be one of the most challenging problems in
the field of robotics research. Assembly tasks such as pick-
and-place, peg-in-hole, bolt screwing, slide-in-groove,
stacking, pushing are well-covered in the literature.

The research area for assembly sequence planning
(ASP) has been active this past decade and solutions have
been proposed based on various algorithms [12‒15] to
improve assembly efficiency, reduce production costs,
and shorten development cycles. In [16] the influence of
assembly predicates on optimal assembly sequence
generation, in terms of search space, computational time
and possibility of resulting practically not feasible
assembly sequences is discussed. Assembly predicates are
used to test the possibility of assembling components in
the defined sequence in the physical environment and they
are defined based on the assembly connections, part
geometries, and accessibility to perform the assembly
operations. Recently, Watanabe and Inada [17] proposed
a computational algorithm for searching the efficient
assembly sequence and work assignment, in the context of
future smart factories. A RL framework is used to search
the assembly sequence through trial and error, and neural
networks methods are used to transfer the past learning
results to the new search to improve the search
performance.
 Learning from demonstration (LfD) is the paradigm in
which agents acquire new skills by learning to imitate an
expert [18, 19]. LfD enables robots to move away from
repeating simple prespecified behaviors in constrained
environments and toward learning to take optimal actions
in unstructured ones without placing a significant burden
on the operator [20]. Demonstrations can be performed by
means of kinesthetic teaching, teleoperation, or passive
observation.
 This paper provides a summary of some of the main
components for applying RL in robotics and includes
state-of-the art RL methods and algorithms. The main
contribution of this work is a better understanding that the
design of appropriate policy representations is essential
for RL methods to be successfully applied to real-world
robots.

This paper is organized as follows: section II describes
key RL concepts and challenges. Next, section III focuses
on RL models and algorithms specific to 6 DOF robot
manipulators. Section IV presents recent developments in
the field of robot vision. In Section V popular RL
simulation frameworks and environments for robotics are
presented. Section VI concludes the review.

2. RL ‒ KEY CONCEPTS AND TERMINOLOGY

Reinforcement learning (RL) is prominently used for
sequential decision-making. The RL problem can be
formalized as an agent that learns an optimal policy by
trial and error, to make decisions in an environment to
optimize a given notion of cumulative rewards. After
taking an action in a specific state, the agent (in the
literature often referred to as a controller) receives a scalar
reward from the environment, which provides an
indication of the quality of that action. The function that
indicates the action to take in a certain state is called a
policy. By following a given policy and processing the
rewards, the agent can build estimates of the accumulated
reward (also called the return). The function representing
the estimated return is known as the value function.

Over the course of time, several types of RL
algorithms and methods have been introduced and they
can be divided into three groups: actor-only (picks actions
greedily based on state values), critic-only (uses the policy
function to pick actions) and actor-critic (uses both value
and policy functions).

The actor-critic method works as follows: at time step
t the actor senses the current system state and applies an
action based on policy (Fig. 2). This leads to a new system
state and a numerical reward. Using this, the Temporal
difference (TD) error is calculated. Using this error, the
critic updates its estimate of the optimal value function.
For continuous state and action spaces, such as in the case
of a robot manipulator arm, the actor and critic need to be
approximated. In contrast to critic-only methods, actor-
critic methods usually have good convergence properties,
[21].

Deep learning (DL), a subset of machine learning,
utilizes a hierarchical level of artificial neural networks to
carry out the process of machine learning. A deep neural
network is characterized by a succession of multiple
processing layers [22]. Deep Reinforcement Learning
(DRL) combines artificial neural networks with a RL
architecture that enables software-defined agents to learn
the best actions possible in a virtual environment in order
to attain their goals.

Fig. 2. The actor-critic agent’s architecture [23].

 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 137

A Markov Decision Process (MDP) is a tuple
(S, A, T, R, 𝛾), where S is the state space, A is a finite set
of actions, T is the state transition probability
distribution, R is the reward function, and 𝛾 is a discount
factor 𝛾 ∈ [0, 1]. The agent learns a quality-function (Q-
learning) denoting the sum of rewards from state s onward
if action a is taken, and as such the agent can choose what
to do in state s by finding the action with the highest Q-
value. In the policy search, the agent learns a policy that
maps directly from states to actions. More state-of-the-art
methods and approaches will be presented in Section 3.5.

In a model-based RL approach, the agent uses a
transition model of the environment to help interpret the
reward signals and to make decision about how to act (the
agent learns a utility function). In contrast, in a model-free
RL the agent neither knows nor learns a transition model
for the environment. Instead, it learns a more direct
representation of how to behave, either through action-
utility learning (quality-function) or through policy search
(policy mapping).

Ebert et al. [24] proposed a self-supervised model-
based approach for a robotic manipulation task that
generalizes effectively to never-before-seen tasks and
objects (visual MPC). Recently, a novel approach to
alleviate the data inefficiency of model-free RL by
implicitly leveraging model priors, called Model-Based
Baseline was proposed in [25].

On-Policy vs. Off-Policy: every RL algorithm must
follow a certain policy to decide which actions to perform
at each state. Algorithms that concern about the policy
which yielded past state-action decisions are referred to as
on-policy algorithms, while those ignoring it are known as
off-policy. Q-Learning is an off-policy RL algorithm,
considered as one of the very basic ones. In its most
simplified form, it uses a table to store all Q-Values of all
possible state-action pairs possible. SARSA is a slight
modification of Q-Learning in order to make it an on-
policy algorithm. SARSA updates its Q-values using the
Q-value of the next state s′ and the current policy's action
a′′. Wang et al. proposed the backward Q-learning based
SARSA algorithm which could enhance the learning
speed and improve action quality and total performance
[26].

Exploration vs Exploitation: the agent can try many
different actions in many different states in order to try and
learn all available possibilities and find the path which will
maximize its overall reward (explores the environment),
or the agent can use the information learned (exploit) to
maximize the rewards it receives. Exploration gives more
knowledge about the environment (leading to better future
decisions), while exploitation chooses the best action to
take given the current information (advancing to the
current most promising direction) [27]. The best strategy
involves sacrificing short-term rewards for more reward in
the future, meaning that a balance between exploration
and exploitation is needed, known as the exploitation-
exploration trade-off [28], which is fundamental to many
RL algorithms.

Imitation Learning is considered as an alternative to
RL to solve sequential decision-making problems and
aims to train a policy to mimic the behavior of an expert,
given only the demonstrations from that expert. It is also
closely related to the LfD approach. There are currently

two main paradigms: behavior cloning (where a policy is
trained only as a supervised-learning task) and inverse RL
(the goal is to recover a reward function of the MDP that
can explain the behavior of the expert demonstrator).

2.1. Challenges that RL faces in robotics

RL is applied in robotics, with techniques striving to
reduce the required number of interactions with the real
world. Such techniques tend to exploit models, be it
estimating models and using them to plan, or training
policies that are robust with respect to different possible
model parameters. The high number of degrees of-
freedom of modern robots leads to large dimensional state
spaces, which are difficult to be learned: example
demonstrations must often be provided to initialize the
policy and mitigate safety concerns during training.
Bellman coined the term “Curse of Dimensionality” in
1957 [30], when he explored optimal control in discrete
high-dimensional spaces and faced an exponential
explosion of states and actions. As the number of
dimensions grows, exponentially more data and
computation are needed to cover the complete state-action
space.

Some remaining barriers to the adoption of RL and
DRL in robotics include the necessity for large training
data and long training times. Banko and Brill [18] argued
that the performance of learners can benefit significantly
from much larger training sets (results observed for a
natural language classification task). Generating training
data on physical systems can be relatively time
consuming, expensive, and sometimes unsafe. Moreover,
in a simulated environment, it is possible to use learning
algorithms running in parallel computation, to learn in a
few hours from millions of trials. But in a real
environment, it might take years to run these same trials.

There is also the problem of under-modeling and
uncertainty. Simulation with accurate models could
potentially be used to offset the cost of real-world
interaction. In an ideal setting, this approach would allow
to learn the behavior in simulation and subsequently
transfer it to the real robot. Unfortunately, creating a
sufficiently accurate model of the robot and its
environment is challenging and often requires extensive
data samples (Fig. 3). As small model errors due to this
under-

Fig. 3. Large-scale data collection setup consisting of 8 Kuka
IIWA robots, used to evaluate transfer learning after another
setup was used to collect a dataset consisting of over 800,000

grasp attempts [29].

138 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

modeling accumulates, the simulated robot can quickly
diverge from the real-world system.

The solutions to these problems came from an active
area of research, which enables the transfer of what has
been learned in simulation to a real robot in the real world,
known as sim-to-real transfer.

Another way to reduce the number of real-world
samples required for learning is to reuse information from
previous learning episodes on other tasks, rather than
starting from scratch. This falls under the umbrella of
meta-learning or transfer learning.

The reality gap represents all discrepancies between
physics simulators and the real world that make
transferring behaviors from simulation challenging. To
learn a policy that transfers well, adding noise to the model
during training, can make the policy more robust (data
augmentation) or, policies can be trained that will work
with a variety of models by sampling different parameters
in the simulations (domain randomization).

Mahmood et al. benchmarked RL algorithms on a
robot arm and found that state-of-the-art learning
algorithms are highly sensitive to their hyper-parameters
and their relative ordering does not transfer across tasks,
indicating the necessity of re-tuning them for each task for
best performance [30].

Barriers addressing the safety concern: applying RL in
robotics demands safe exploration which becomes a key
issue of the learning process. While learning, the
dynamics of a robot can change due to many external
factors ranging from temperature to wear thereby the
learning process may never fully converge. A possible
solution is to learn low-level control policies for motion
planning using soft robots [29] (manipulators with joint
torque control or flexible joints), which are considerably
safer to work with due to their compliant nature.

The main robotic assembly challenge is the
requirement of a high degree of repeatability, reliability,
and flexibility. Two common approaches for RL
practitioners for faster learning and better performance are
the Hierarchical Task Decompositions and the Skill
Reusability which ensure that the primary robotic task is
divided into smaller and more tractable problems in order
for the robot to learn skill policies for performing the
lowest level of tasks and then use these skills as an action
basis to perform the next level of tasks. Transfer learning
tries to use experience from one set of tasks on a new task.
Finding an abstract representation and generalizing across
objects is a major aspect of learning to manipulate objects
and adapt accordingly.

Despite its impressive successes, RL and DRL still
face significant obstacles, but it is, nonetheless, a very
active area of research. As hardware improved (leading to
specialized hardware e.g., GPU, TPU, or FPGA), and as
RL and neural networks began to become more practical,
they were increasingly found to be effective with real
robotics applications.

Another important development in the field of RL has
been indirectly borrowed from vast successes of deep
convolutional neural networks (CNN) in image feature
extraction. Work in RL has been also accelerated by the
availability of open-source simulation environments for
developing and testing learning agents, which will be
further addressed in Section V.

3. RL IN ROBOTICS

The main motivation for using RL to teach robots new
skills is that it offers three previously missing abilities: to
learn new tasks that otherwise cannot be directly
programmed, to learn to achieve optimization goals of
difficult problems that have no analytic formulation by
using only a known cost function (e.g., minimize the used
energy for performing a task), to learn to adapt a skill to a
new, previously unseen version of a task.

The predominant approach to perception, planning,
and control in robotics is to use approximate models of the
physics underlying a robot, its sensors, and its interactions
with the environment. These model-based techniques
often capture properties such as the mass, momentum,
shape, and surface friction of objects, and use these to
generate controls that change the environment in a
desirable way. In contrast, physics-based models are well
suited for planning and predicting the outcome of actions.
To function on a real robot, they require that all relevant
model parameters are known with sufficient accuracy and
can be tracked over time. This requirement poses overly
challenging demands on system identification and
perception.

Robotic learning in the physical world is also
constrained by time, by the risk of damaging the robot (or
putting at risk the safety of its surroundings) and by the
large data needed for training (expensive to collect). Data
augmentation, transfer learning, and sim-to-real are
efficient solutions to this problem. Sim-to-real is a
technique often used to train in simulation before
attempting to train with an actual robot, this way reducing
the wear on physical equipment, and the training time.

To speed up RL, Dai et al. [31] proposed a novel
method for Self-Imitation Learning (SIL), in which an on-
policy RL algorithm uses episodic modified past
trajectories, i.e., hindsight experiences, to update policies.
The experiments show that episodic SIL can perform
better than baseline on-policy algorithms, achieving
comparable performance to state-of-the-art off-policy
algorithms in several simulated robot control tasks. With
the capability of solving sparse reward problems in
continuous control settings, episodic SIL has the potential
to be applied to real-world problems that have continuous
action spaces, such as robot guidance and manipulation.

A new domain adaptation algorithm called MPBO
(Multi-Policy Bayesian Optimization) was introduced in
[32] and uses simulated kinematic parameters variation.
The simulated experiments showed that introducing
variations in kinematics during training in simulation can
benefit policy transfer. Hameed et al. [33] introduced a
novel combination of scheduling control on a flexible
robot manufacturing cell with curiosity based RL. In [34],
the authors have analyzed how multi-agent reinforcement
learning can bridge the gap to reality in distributed multi-
robot systems where the operation of the different robots
is not necessarily homogeneous.

One of the foremost requirements for manufacturing
robots is precision, therefore, the RL model must provide
a precise reference tracking. Extensive efforts have been
made to improve the generalization ability of RL methods
in robotics via domain randomization and data
augmentation.

 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 139

Recently, [35] proposed SOft Data Augmentation
(SODA), a method that stabilizes training by decoupling
data augmentation from policy learning. SODA is a
general framework (which uses Soft Actor-Critic (SAC)
as the base algorithm) for data augmentation that can be
implemented on top of any standard RL algorithm. [36]
proposed an adversarial RL framework, which
significantly increases robot robustness over joint damage
and malfunction in manipulation tasks. This enables the
robot to be fault-aware of its joint working states.

To apply RL on real-world robots in safety-critical
environments, it should be possible to ensure safety during
and after training. During RL training, applying the trial-
and-error approach to real-world robots operating in
safety-critical environment may lead to collisions. To
address this challenge, [37] proposed a Reachability-based
Trajectory Safeguard (RTS), which leverages trajectory
parameterization and reachability analysis to ensure safety
while a policy is being learned. The method, RTS+RL, is
demonstrated in simulation performing safe, real-time
receding-horizon planning on three robot platforms with
continuous action spaces.

3.1. Motion planning and trajectory tracking control

Control theory is still an active field of research
addressing the motion planning problem by finding a
solution that takes a robot from one configuration to
another without colliding with an obstacle. The task of
executing a sequence of actions to follow the path is called
trajectory tracking control. A trajectory has time
associated with each point on the path. A dynamic model
(transition model) is needed for RL solutions and used for
motion: knowing the configurations (given by the path), a
function is used to compute the effects torques have on a
configuration.

Motion planning can be solved via graph search using
cell decomposition, using randomized motion planning
algorithms (that tend to first construct a complex but
feasible path and then optimize it), or using trajectory
optimization (which starts with a simple but infeasible
path, and then iteratively pushes it out of collision). The
simplest method to solve the optimization problem and
find a path is to use a method known as gradient descent.

In [3], the authors addressed the problem of solving
manipulation tasks in the presence of obstacles and
proposed a novel approach, called MoPA-RL (motion
planner augmented RL), which combines the strengths of
both motion planning and RL by augmenting the action
space of an RL agent with the capabilities of a motion
planner.

A path found by a search algorithm can be executed
using the path as the reference trajectory for a PID
controller, which constantly corrects for errors between
where the robot is and where it is supposed to be, or via
computed torque control, which adds a feedforward term
that makes use of inverse dynamics to compute roughly
what torque to send in order to make progress along the
trajectory.

A middle ground between open-loop control based on
inverse dynamics and closed-loop PID control is called
computed torque control (the torque the model thinks is
needed will be computed, but afterwards it is compensated
for model inaccuracy with proportional error terms).

JAiLeR (Joint Space Control via Deep Reinforcement
Learning), a deep RL-based approach to control a robot
manipulator was presented in [38]. A deep neural network,
trained via model-free reinforcement learning, is used to
map from task space to joint space. Training in simulation
showed that this simple approach can achieve accuracy
comparable to that of classical techniques over a large
workspace, in both simulation and reality. Advantages of
this approach include automatic handling of redundancy,
joint limits, and acceleration/ deceleration profiles.

An approach to learn fast robot trajectories while
satisfying kinematic joint constraints was presented in
[39]. In contrast to penalizing constraint violations, this
approach provides explicit safety guarantees. Dual-arm
robots have attracted much attention in recent years and
solutions emerged addressing the challenges of motion
planning, e.g. Simultaneous Dual-Arm Motion Planning
[40] which is a method to achieve efficient pick-and-place
performance with a dual-arm robot in order to minimize
its operation time. The path planning using the rapidly
exploring random tree (RRT) enabled the dual-arm robot
to execute the pick-and-place work without collisions
between the arms. Motion planning for multi-robots was
also addressed in [41‒43].

3.2. Optimal control

Optimal control unites motion planning and trajectory
tracking by computing an optimal trajectory directly over
control inputs. Put in simple words, the trajectory
optimization problem for kinematic paths is turned into
true trajectory optimization with dynamics. To capture a
detailed background introduction to optimal control, the
authors recommend Liberzon’s book [44].

The linear quadratic regulator (LQR) finds many uses
in practice because of the ease of finding the optimal
policy. With LQR, the optimal value function is quadratic,
and the optimal policy is linear. Variants of LQR are also
often used for trajectory tracking. Another practical
method called iterative LQR (ILQR), works by starting
with a solution and then iteratively computing a linear
approximation of the dynamics and a quadratic
approximation of the cost around it, then solving the
resulting LQR system to arrive at a new solution. ILQR is
currently widely used at the intersection of motion
planning and control [45].

Dean et al. addressed the problem of optimal control
and proposed a multistage procedure, called Coarse-ID
control [46]. The method estimates a model from few
experimental trials, estimates the error in that model and
then designs a controller (using both the model and
uncertainty estimate). Kapoor et al. [47] proposed an
approach to express the desired high-level robot behavior
using a formal specification language known as Signal
Temporal Logic (STL) as an alternative to reward/cost
functions. The proposed algorithm is empirically
evaluated on simulations of robotic systems such as a
pick-and-place using a robotic arm.

Addressing the control stability concern, a normalizing
flow control structure for robotic manipulation was
recently introduced by Khader et al in [48]. Their results
indicated that by inducing stable behavior, the state-action
distribution can be significantly reduced without
compromising the learning performance.

140 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

3.3. Force control, impedance, and compliance
The most popular approaches for interaction control of

robot manipulators are position/force control and
impedance control. Force control methods address the
problem of interaction between a robot manipulator and
its environment, providing direct control of the interaction
through contact force feedback and a set of dynamic
parameters. The position/force control uses the impedance
model to generate the desired force.

The objective of the impedance control is to achieve
the desired dynamic relationship between the end-effector
position of the robot and the contact force, namely that the
output force is as small as possible and that the position is
close to its reference. The impedance model uses as input
the position/velocity of the end-effector and outputs the
exerted force.

Recently, Perrusquía et al. presented a model-free PID
admittance controller for robot manipulators that use RL,
showing that the position error is minimized without
knowing the environment or the impedance parameters
[49]. Various methods to actively control compliance at
the end-effector have been developed, such as impedance
control [51, 52] operational space control [52], hybrid
force-control [54, 55], and virtual model control [55].
Impedance control is a well-established technique to
control interaction forces in robotics. Active compliance
is achieved through the active control of joints (position or
torque) using feedback measurements of joint torques. A
major benefit of active compliance is its ability to change
the dynamic characteristics (e.g. stiffness and damping) in
real-time.

Based on compliance control, Roveda et al. proposed
an approach that consists in two main control levels:
iterative friction learning compensation controller and
iterative force-tracking learning controller. The control
procedure has been applied to an automotive industrial
assembly task [56]. A methodology for designing joint
impedance controllers based on an inner torque loop and
a positive velocity feedback loop was presented in [57] for
safely learning contact-rich manipulation tasks on
position-controlled robots.

Figure 4 shows the system architecture proposed in
[5], having two control loops: the inner one is an adaptive
compliance controller (a parallel position-force controller)
and the outer one is an RL control policy.

In [58], the authors proposed a learning framework for
position-controlled robot manipulators to solve contact-
rich manipulation tasks (peg-in-hole tasks with hole-
position uncertainty). An off-policy model-free RL
method was used, while bootstrapping the training speed

by using several transfer-learning techniques: sim-to-real
and domain randomization. A learning-based force control
framework combining RL techniques with traditional
force control was proposed in [59].

3.4. Training models and data

A model of the world can be useful in reducing the
sample complexity of model-free RL methods by doing
sim-to-real transfer: transferring policies that work in
simulation to the real world (illustrated in Fig. 5).

To learn hand-eye coordination for robotic grasping,
Levine et al. trained a large convolutional neural network
to predict the probability that task-space motion of the
gripper will result in successful grasps [60]. Their large-
scale data collection setup consisted of 14 robotic arms
running over the course of two months to collect 800,000
grasp attempts.

More recent techniques have experimented with fitting
local models, planning with them to generate actions, and
using these actions as supervision to fit a policy, then
iterating to get better and better models around the areas
that the policy needs. This has been successfully applied
in end-to-end learning [61].

Another way to reduce the number of real-world
samples required for learning is to reuse information from
previous learning episodes on other tasks, rather than
starting from scratch, known as transfer learning. In RL,
agents rely heavily on prior experience when learning a
new task and a common approach in RL is to learn an
“easy” skill before fitting the model to learn something far

Fig. 5. Conceptual view of a sim-to-real transfer process as
presented in [34]. One of the most common methods when

training in simulation is domain randomization.

Fig. 4. A variable compliance control approach for robotic assembly proposed in [5]: the system learns a control policy that defines
motion-trajectory and force-control parameters of an adaptive compliance controller to control the robot arm.

 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 141

more complicated. Pertsch et al. addressed the problem of
agents that possess a full set of available skills (during
learning, not all skills should be explored with equal
probability). They proposed a deep latent variable model,
SPiRL (Skill-Prior RL), that jointly learns an embedding
space of skills [62].

3.5. State-of-the-Art DRL Algorithms in Robotics

Policy gradient-based actor-critic algorithms are
amongst the most popular algorithms in the reinforcement
learning framework due to their advantage of being able
to search for optimal policies using low-variance gradient
estimates.

The variety of DRL architectures is partitioned into
two different branches: discrete action space algorithms
(DAS), such as Deep Q-Network (DQN), and continuous
action space algorithms (CAS), such as Deep
Deterministic Policy Gradient (DDPG). Further, the CAS
algorithms are divided into stochastic continuous action
space (SCAS) and deterministic continuous action space
(DCAS) algorithms. Figure 6 illustrates a hierarchical
view of DRL algorithms.

An actor-critic DRL agent with experience replay that
is stable, sample efficient, and performs remarkably well
in challenging environments and continuous control
problems was presented in [63]. Replay is a valuable tool
for improving sample efficiency. Experience replay has
gained popularity in deep Q-learning where it is often used
for reducing sample correlation.

Another actor-critic method was proposed in [64],
called ACKTR. It applies trust region optimization to
DRL using Kronecker-factored approximation to the
curvature. Work [65] presented an actor-critic, model-free
algorithm based on deterministic policy gradient that can
operate over continuous action spaces, called DDPG.

DDPGwB was introduced in [66], as a novel algorithm
that utilizes one or more base controllers to efficiently and
safely learn challenging sparse-reward robotic tasks, with
the learned state-based or image-based policies exceeding
the performances of the base controllers. The DDPGwB
algorithm is built upon DDPG and incorporates the
controllers into stages of exploration, Q-value estimation
as well as policy update.

Hindsight Experience Replay (HER) [67] allows
sample-efficient learning from rewards which are sparse
and binary, avoiding the need for complicated reward
engineering. New methods for RL, called PPO were

Fig. 6. The DRL topology.

presented in [68], offering the possibility to alternate
between sampling data through interaction with the
environment, and optimizing a surrogate objective
function using stochastic gradient ascent. Notable results
can be achieved by combining model-free and model-
based DRL with Guided Policy Search (GPS) [69].

When the RL agent explores the environment
randomly, it results in low exploration efficiency,
especially in robotic manipulation tasks with high
dimensional continuous state and action space. In [70] the
Augmented Curiosity-Driven Experience Replay
(ACDER) method was proposed, which leverages a new
goal-oriented curiosity-driven exploration to encourage
the agent to pursue novel and task-relevant states more
purposefully and the dynamic initial states selection as an
automatic exploratory curriculum to further improve the
sample-efficiency. Their approach complements HER by
introducing a new way to pursue valuable states. The
policies trained in simulation for reach, push and
pick&place tasks perform well on the physical robot
without any additional fine-tuning.

The problem of inverse RL is relevant to a variety of
tasks including value alignment and robot LfD. [71]
presented an inverse RL framework called Bayesian
optimization-IRL (BO-IRL) which identifies multiple
solutions that are consistent with the expert
demonstrations by efficiently exploring the reward
function space. Empirical results on synthetic and real-
world environments (model-free and model-based) show
that BO-IRL discovers multiple reward functions while
minimizing the number of expensive exact policy
optimizations.

Ho and Ermon [72], proposed a novel framework,
called GAIL, for directly extracting a policy from data, in
an inverse RL fashion. Another state-of-the-art policy-
search RL algorithm, called PI2 (policy improvement with
path integrals), was proposed by Theodorou et al. in [73],
for learning parameterized control policies based on the
framework of stochastic optimal control with path
integrals. The approach demonstrates significant
performance improvements over gradient-based policy
learning and scalability to high-dimensional control
problems.

A model-based RL framework called Critic PI2, which
combines the benefits from trajectory optimization, deep
actor-critic learning, and model-based reinforcement
learning was presented in [74]. Empirical experiments
demonstrated that Critic PI2 achieved a new state of the
art in a range of challenging continuous domains, and that
planning with a critic significantly increases the sample
efficiency and real-time performance.
 Focusing on the robotics field needs, [75] proposed the
use of RL to learn how to compose hierarchical object-
centric controllers for manipulation tasks. Their approach
has several advantages: the object-centric controllers can
be reused across multiple tasks, and controller
compositions are invariant to certain object properties.
Experiments showed that the proposed approach leads to
more guided exploration and consequently improved
sample efficiency, and it enables zero-shot generalization
to test environments and simulation-to-reality transfer
without fine-tuning.

142 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

Another approach, called COG, [76] showed that prior
data can be reused to extend new skills simply through
dynamic programming. Addressing the skill transfer
problem, a novel approach, called SPiRL (Skill-Prior RL)
was recently proposed in [62]. A new contextual off-
policy RL algorithm, named LAtent-Movements Policy
Optimization (LAMPO) was recently introduced in [77].
LAMPO can provide gradient estimates from previous
experience using self-normalized importance sampling,
hence, making full use of samples collected in previous
learning iterations.

To address the issues RL algorithms face when task
rewards are sparse, a novel form of intrinsic motivation
that can allow robotic manipulators to learn useful
manipulation skills with only sparse extrinsic rewards was
proposed in [78]. Through maximizing the mutual
dependence between robot actions and environment states,
namely the empowerment, this intrinsic motivation helps
the agent to focus more on the states where it can
effectively “control” the environment instead of the parts
where its actions cause random and unpredictable
consequences. Empirical evaluations in different robotic
manipulation environments with different shapes of the
target object demonstrate the advantages of this
empowerment-based intrinsic motivation over other state-
of-the-art solutions to sparse-reward RL tasks.

Developments in the robotic vision field were also
enabled by state-of-the-art methods, such as presented in
[79], where DRL base system for controlling a robotic
manipulator with only visual perception was presented.
Levine et al. presented a learning-based approach to hand-
eye coordination for robotic grasping in [60].

4. ROBOT VISION

In a simplified view, computer vision takes images and
translates them into information, while robotic vision
translates images into actions. Some of the main
challenges for robotic vision are active learning,
uncertainty estimation, and active manipulation on spatial
embodiment. To get the full grasp of limits and potentials
of robotic vision, refer to [80].

Vision-based RL and imitation learning methods
incorporating deep neural network structure can express
complex behaviors, and they solve robotics manipulation
tasks in an end-to-end fashion.

Miyajima presented the efficiency of DL when it is
used for object detection, object pose estimation and robot
grasp generation in [81]. The peg-hole insertion problem
was addressed in [82] where DRL was used to learn the
policy (which only takes RGB-D and joint information)
end-to-end and then transfer the learned model to the real
robot. They demonstrated that a purely eye-in-hand,
image-based controller can be trained in simulation to
perform peg-hole insertion with sub-centimeter accuracy.

By focusing on the task of object localization problem
in [83] it was demonstrated that an object detector trained
only in simulation can achieve high enough accuracy in
the real world to perform grasping in clutter. Image
augmentation is crucial for successful transfer from
simulation to the real-world.

A novel approach to crossing the visual reality gap that
uses no real-world data called Randomized to- Canonical

Fig. 7. Randomized simulation images are translated by a
generator to a canonical simulation version and then used to

train a robot grasping agent (top). The Sim-to-Real transfer of
the agent (bottom) is presented in [84].

Adaptation Networks (RCANs) was presented in [84], and
illustrated in Fig. 7. The authors demonstrated the
effectiveness of the sim-to-real approach by training a
vision-based closed-loop grasping RL agent in simulation,
and then transferring it to the real world to attain 70%
zero-shot grasp success on unseen objects, a result that
almost doubles the success of learning the same task
directly on domain randomization alone.

An approach to RL was proposed in [85] without hand-
programmed reward functions by enabling a robot to learn
from a modest number of examples of successful
outcomes, followed by actively solicited queries (for only
a tiny fraction of the states), where the robot shows the
user a state and asks for a label to determine whether that
state represents successful completion of the task. Their
experiments show that the proposed method (VICE-RAQ)
effectively learns to arrange objects, place books, and
drape cloth, directly from images and without any
manually specified reward functions, and with only 1‒4
hours of interaction with the real world.
 An approach capable of extracting dense reward
functions algorithmically from robots’ high-dimensional
observations, such as images and tactile feedback was
presented in [86]. Their approach learns rewards by
estimating task progress in a self-supervised manner. They
demonstrated the effectiveness and efficiency of their
approach on two contact-rich manipulation tasks, namely,
peg-in-hole and USB insertion. The experimental results
indicate that the policies trained with the learned reward
function achieves better performance and faster
convergence compared to the baselines.

In [87], the authors presented ROLL (Reinforcement
learning with Object Level Learning), a goal-conditioned
visual self-supervised RL algorithm that incorporates
object reasoning. The algorithm uses unknown object
segmentation to ignore distractors in the scene for better
reward computation and goal generation; occlusion
reasoning is further enabled by employing a novel
auxiliary loss and training scheme.

A method for offline learning of counterfactual
predictions was proposed in [88]. Their approach
combines offline and online learning in the use of
counterfactual predictions learned offline to accelerate

 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 143

online policy learning. Experiments were conducted in
both simulation and real-world scenarios for evaluation.
 RetinaGAN was introduced in [89], as an object-aware
sim-to-real adaptation technique which transfers robustly
across environments and tasks, even with limited real data.
Retina-GAN involves a CycleGAN that adapts simulated
images to look more realistic while also resulting in
consistent objects predictions. This method provides
reliable sim-to-real transfer for tasks in diverse visual
environments. Addressing the vision sim-to-real gap, [90]
introduced RL-CycleGAN. They proposed a method to
employ generative models to translate simulated images
into realistic ones and introduced a RL-scene consistency
loss for image translation, which ensures that the
translation operation is more robust.

5. SIMULATION FRAMEWORKS AND

ENVIRONMENTS

 As mentioned in the Section II, a first approach to
solve diverse robot arm manipulation tasks can be done
mainly in simulation, but it can happen often for the model
to under-perform in the real world. Another approach is to
train directly on the real robot, but this is difficult and has
several drawbacks. A third strategy, which is the most
promising, is to combine the two approaches, by pre-
training models in simulation and continue learning in the
real world.

OpenAI Gym is probably the most popular
environment for benchmarking DRL algorithms. It
includes a suite of robotics environments based on the
MuJoCo simulation engine. Multi-Goal RL tasks can be
developed for pushing, sliding and pick & place with a
Fetch robotic arm, as well as in-hand object manipulation
with a Shadow Dexterous Hand [4].

Acme [91] is a framework for distributed RL
introduced by DeepMind. The framework is used to build
readable, efficient, research oriented RL algorithms. At its
core, Acme is designed to enable simple descriptions of
RL agents that can be run at various scales of execution,
including distributed agents.

Surreal [92], is an open-source, scalable framework
that supports state-of-the-art distributed RL algorithms,
known also as Scalable Robotic RL Algorithms. The
framework decomposes a distributed RL algorithm into
four components, which are a generation of experience
(actors), storage of experience (buffer), updating
parameters from experience (learner), and storage of
parameters. It is a principled distributed learning
formulation that accommodates both on-policy and off-
policy learning.

Recently, Lucchi et al. introduced robo-gym, an open
source and freely available framework (illustrated in Fig.
8.) that allows to train DRL control policies in distributed
simulations and later, to apply them directly on the real
world robots [93]. As the toolkit will continuously grow,
it will serve as a solid base for developing research within
the field of DRL in robotics.

Hein et al. designed a benchmark that bridges the gap
between freely available, documented, and motivated
artificial benchmarks and properties of real industrial
problems. The Industrial Benchmark (IB) [94] is a useful
addition to the set of existing RL benchmarks, addressing

Fig. 8. The robo-gym framework as presented in [93].

a particular set of properties, such as stochastic dynamic
with high dimensional continuous state and action spaces,
motivated by industrial control problems.

6. CONCLUSIONS

 This work presents a comprehensive review of RL and
DRL approaches focusing on their applications in robotic
assembly. The main challenges RL faces in robotics such
as the necessity of large training data, long training times,
model uncertainty, safety concerns and reality gaps are
discussed and solutions to overcome them are offered.

For robotic manipulation, continuous action domain
algorithms are the most effective and applicable. The
capacity to self-optimize the controllers of robot arms is
crucial in the Industry 4.0 setting. This capability is
mandatory for handling the frequent changes that occur in
the manufacturing process, to ensure high accuracy and
precision, and therefore to guarantee cost efficiency and
high quality of the manufactured products. For
applications that require high positioning accuracy, fine-
tuning the controller for each task will be unfeasible, thus
a self-learning capability will be crucial.

In the context of smart factories, for a successfully
assembled product, a RL-based assembly approach should
plan the correct sequences of assembly tasks, the
individual collision-free movements, compute the
required forces and torques, and estimate the pose of
assembly parts. Key strategies such as hierarchical task
decompositions and skill reusability could ensure the
successful use of RL-based methods in an industrial
setting.

Despite significant advancements of RL in simulated
domains such as games, its potentially great influence on
real robot applications is still limited. There is a need to
learn highly complicated reward functions and methods to
represent highly skilled behaviors and skills. This opens
the possibility for a trend towards exploration of sample
efficient and time efficient algorithms, solving both
continuous state and action space problems. Addressing

144 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

the need for large, difficult to collect and expensive
training data for learning, methods and approaches have
emerged to facilitate the learning process for robots, such
as data augmentation, domain randomization, and sim-to-
real transfer.

This work includes a brief introduction to RL
simulation frameworks and environments that are
currently freely available and could enable further
research opportunities.

DL techniques have also changed many aspects of
computer vision over the past decade and have been
rapidly adopted into robotics as well. However, robotic
perception, robotic learning, and robotic control are
demanding tasks that continue to pose serious challenges
on the techniques typically used. Nevertheless, the use of
robotic vision in various robotic assembly tasks presents
potential development directions leading to better
performance and faster convergence compared to current
the baselines.

Answering the question whether or to what extent, can
the knowledge of solving one task help in solving another,
may help in achieving automatic transfer learning,
including the source task selection, the mapping function
design, and more. This will accelerate the learning process
and could become an essential topic in RL.

ACKNOWLEDGEMENTS: This work has been
funded by the European Social Fund from the Sectorial
Operational Programme Human Capital 2014-2020,
through the Financial Agreement with the title
"Scholarships for entrepreneurial education among
doctoral students and postdoctoral researchers (Be
Entrepreneur!)", Contract no. 51680/09.07.2019 - SMIS
code: 124539.

REFERENCES

[1] J. Xiao, L. Li, T. Zhang, and Y. Zou, “Time-Optimal Path
Tracking for Industrial Robots: A Dynamic Model-Free
Reinforcement Learning Approach,” arXiv, Jul. 2019.

[2] F. Rubio, F. Valero, J. Sunyer, and J. Cuadrado, “Optimal
time trajectories for industrial robots with torque, power,
jerk and energy consumed constraints,” Ind. Rob., vol. 39,
no. 1, pp. 92–100, 2012.

[3] J. Yamada et al., “Motion Planner Augmented
Reinforcement Learning for Robot Manipulation in
Obstructed Environments,” Oct. 2020.

[4] M. Plappert et al., “Multi-Goal Reinforcement Learning:
Challenging Robotics Environments and Request for
Research,” arXiv, Feb. 2018.

[5] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar,
and K. Harada, “Variable compliance control for robotic
peg-in-hole assembly: A deep-reinforcement-learning
approach,” 2020.

[6] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, “Deep
reinforcement learning with smooth policy update:
Application to robotic cloth manipulation,” Rob. Auton.
Syst., vol. 112, pp. 72–83, Feb. 2019.

[7] D. Schwung, F. Csaplar, A. Schwung, and S. X. Ding, “An
application of reinforcement learning algorithms to
industrial multi-robot stations for cooperative handling
operation,” 2017.

[8] D. Kragic and M. Vincze, “Vision for Robotics,” Found.
Trends Robot., vol. 1, no. 1, pp. 1–78, 2009.

[9] A. K. Bozkurt, Y. Wang, and M. Pajic, “Secure Planning
Against Stealthy Attacks via Model-Free Reinforcement

Learning,” Nov. 2020.
[10] S. Yin, W. Ji, and L. Wang, “A machine learning based

energy efficient trajectory planning approach for industrial
robots,” Procedia CIRP, vol. 81, pp. 429–434, 2019.

[11] A. Rupam Mahmood, D. Korenkevych, B. J. Komer, and J.
Bergstra, “Setting up a Reinforcement Learning Task with
a Real-World Robot,” in IEEE International Conference on
Intelligent Robots and Systems, Mar. 2018, pp. 4635–4640.

[12] G. B. Murali, B. Deepak, B. Biswal, G. B. Mohanta, and A.
Rout, “Robotic Optimal Assembly Sequence Using
Improved Cuckoo Search Algorithm,” Procedia Comput.
Sci., vol. 133, pp. 323–330, 2018.

[13] Y. Su, H. Mao, and X. Tang, “Algorithms for solving
assembly sequence planning problems,” Neural Comput.
Appl., pp. 1–10, Jun. 2020.

[14] G. B. Murali, B. B. V. L. Deepak, and B. B. Biswal,
“Optimal robotic assembly sequence planning using crab
shell search algorithm,” Int. J. Mechatronics Autom., vol. 7,
no. 3, p. 147, 2020.

[15] G. B. Murali, B. B. V. L. Deepak, B. B. Biswal, and Y.
Karun Kumar, “Robotic Assembly Sequence Generation
Using Improved Fruit Fly Algorithm,” in Lecture Notes in
Mechanical Engineering, 2020, pp. 239–247.

[16] M. V. A. Raju Bahubalendruni, B. B. Biswal, M. Kumar,
and R. Nayak, “Influence of assembly predicate
consideration on optimal assembly sequence generation,”
Assem. Autom., vol. 35, no. 4, pp. 309–316, Sep. 2015.

[17] K. Watanabe and S. Inada, “Search algorithm of the
assembly sequence of products by using past learning
results,” Int. J. Prod. Econ., vol. 226, p. 107615, Aug. 2020.

[18] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from
demonstration framework to perform force-based
manipulation tasks,” Intell. Serv. Robot., vol. 6, no. 1, pp.
33–51, Jan. 2013.

[19] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S.
Levine, “Vision-based multi-task manipulation for
inexpensive robots using end-to-end learning from
demonstration,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2018, pp. 3758–
3765.

[20] H. Ravichandar, A. S. Polydoros, S. Chernova, and A.
Billard, “Recent Advances in Robot Learning from
Demonstration,” Annu. Rev. Control. Robot. Auton. Syst.,
vol. 3, no. 1, pp. 297–330, May 2020.

[21] V. R. Konda and J. N. Tsitsiklis, “On actor-critic
algorithms,” SIAM J. Control Optim., vol. 42, no. 4, pp.
1143–1166, Jan. 2003.

[22] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding Neural Networks Through Deep
Visualization,” Jun. 2015.

[23] Chun-Gui Li, Meng Wang, and Qing-Neng Yuan, “A
Multi-agent Reinforcement Learning using Actor-Critic
methods,” in 2008 International Conference on Machine
Learning and Cybernetics, Jul. 2008, vol. 2, pp. 878–882.

[24] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine,
“Visual Foresight: Model-Based Deep Reinforcement
Learning for Vision-Based Robotic Control,” arXiv, Dec.
2018.

[25] X. Lyu, S. Li, S. Siriya, Y. Pu, and M. Chen, “MBB: Model-
Based Value Initialization for Reinforcement Learning,”
2020.

[26] Y. H. Wang, T. H. S. Li, and C. J. Lin, “Backward Q-
learning: The combination of Sarsa algorithm and Q-
learning,” Eng. Appl. Artif. Intell., vol. 26, no. 9, pp. 2184–
2193, Oct. 2013.

[27] M. Coggan, “Exploration and exploitation in reinforcement
learning,” Res. supervised by Prof. Doina Precup, CRA-W,
2004.

[28] P. Auer, “Using confidence bounds for exploitation-
exploration trade-offs,” 2003.

 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 145

[29] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D.
Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data
collection,” Int. J. Rob. Res., vol. 37, no. 4–5, pp. 421–436,
Apr. 2018.

[30] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J.
Bergstra, “Benchmarking reinforcement learning
algorithms on real-world robots,” 2018.

[31] T. Dai, H. Liu, and A. Anthony Bharath, “Episodic Self-
Imitation Learning with Hindsight,” Electronics, vol. 9, no.
10, p. 1742, Nov. 2020.

[32] I. Exarchos, Y. Jiang, W. Yu, and C. K. Liu, “Policy
Transfer via Kinematic Domain Randomization and
Adaptation,” Nov. 2020.

[33] M. S. A. Hameed, M. M. Khan, and A. Schwung, “Curiosity
Based Reinforcement Learning on Robot Manufacturing
Cell,” Nov. 2020.

[34] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real
Transfer in Deep Reinforcement Learning for Robotics: a
Survey,” Sep. 2020.

[35] N. Hansen and X. Wang, “Generalization in Reinforcement
Learning by Soft Data Augmentation,” Nov. 2020.

[36] F. Yang, C. Yang, D. Guo, H. Liu, and F. Sun, “Fault-
Aware Robust Control via Adversarial Reinforcement
Learning,” Nov. 2020.

[37] Y. S. Shao, C. Chao, S. Kousik, and R. Vasudevan,
“Reachability-based Trajectory Safeguard (RTS): A Safe
and Fast Reinforcement Learning Safety Layer for
Continuous Control,” Nov. 2020.

[38] V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and
S. Birchfield, “Joint Space Control via Deep Reinforcement
Learning,” Nov. 2020.

[39] J. C. Kiemel and T. Kröger, “Learning Robot Trajectories
subject to Kinematic Joint Constraints,” Nov. 2020.

[40] J. Kurosu, A. Yorozu, and M. Takahashi, “Simultaneous
dual-arm motion planning for minimizing operation time,”
Appl. Sci., vol. 7, no. 12, p. 1210, Nov. 2017.

[41] S. S. Mirrazavi Salehian, N. Figueroa, and A. Billard, “A
unified framework for coordinated multi-arm motion
planning,” Int. J. Rob. Res., vol. 37, no. 10, pp. 1205–1232,
Sep. 2018.

[42] J. P. Van Den Berg and M. H. Overmars, “Prioritized
motion planning for multiple robots,” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IROS, 2005, pp. 430–435.

[43] H. Ha, J. Xu, and S. Song, “Learning a Decentralized Multi-
arm Motion Planner,” Nov. 2020.

[44] D. Liberzon, Calculus of Variations and Optimal Control
Theory. Princeton University Press, 2019.

[45] W. Li and E. Todorov, “Iterative Linear Quadratic
Regulator Design for Nonlinear Biological Movement
Systems,” in Proceedings of the First International
Conference on Informatics in Control, Automation and
Robotics, 2011, pp. 222–229.

[46] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the
Sample Complexity of the Linear Quadratic Regulator,”
Found. Comput. Math., vol. 20, no. 4, pp. 633–679, Aug.
2020.

[47] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-
based Reinforcement Learning from Signal Temporal
Logic Specifications,” Nov. 2020.

[48] S. A. Khader, H. Yin, P. Falco, and D. Kragic, “Learning
Stable Normalizing-Flow Control for Robotic
Manipulation,” Oct. 2020.

[49] A. Perrusquía, W. Yu, and A. Soria, “Position/force control
of robot manipulators using reinforcement learning,” Ind.
Rob., vol. 46, no. 2, pp. 267–280, Mar. 2019.

[50] N. Hogan, “Impedance control: An approach to
manipulation: Part II-implementation,” J. Dyn. Syst. Meas.
Control. Trans. ASME, 1985.

[51] J. Luo et al., “Reinforcement learning on variable
impedance controller for high-precision robotic assembly,”
Proc. - IEEE Int. Conf. Robot. Autom., vol. 2019-May, pp.
3080–3087, Mar. 2019.

[52] O. Khatib, “A Unified Approach for Motion and Force
Control of Robot Manipulators: The Operational Space
Formulation,” IEEE J. Robot. Autom., 1987.

[53] W. D. Fisher and M. S. Mujtaba, “Hybrid position/force
control. A correct formulation,” Int. J. Rob. Res., 1992.

[54] W. Gueaieb, F. Karray, and S. Al-Sharhan, “A robust hybrid
intelligent position/force control scheme for cooperative
manipulators,” IEEE/ASME Trans. Mechatronics, 2007.

[55] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt,
“Virtual Model Control : An Intuitive Approach,” Int. J.
Rob. Res., 2001.

[56] L. Roveda, G. Pallucca, N. Pedrocchi, F. Braghin, and L.
M. Tosatti, “Iterative Learning Procedure with
Reinforcement for High-Accuracy Force Tracking in
Robotized Tasks,” IEEE Trans. Ind. Informatics, vol. 14,
no. 4, pp. 1753–1763, Apr. 2018.

[57] M. Focchi et al., “Robot impedance control and passivity
analysis with inner torque and velocity feedback loops,”
Control Theory Technol., vol. 14, no. 2, pp. 97–112, 2016.

[58] L. Wang, Y. Xiang, and D. Fox, “Goal-Auxiliary Actor-
Critic for 6D Robotic Grasping with Point Clouds,” Appl.
Sci., vol. 10, no. 19, p. 6923, Oct. 2020.

[59] C. C. Beltran-Hernandez et al., “Learning Force Control for
Contact-rich Manipulation Tasks with Rigid Position-
controlled Robots,” Mar. 2020.

[60] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D.
Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data
collection,” Int. J. Rob. Res., vol. 37, no. 4–5, pp. 421–436,
Apr. 2018.

[61] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine,
“End-to-End Robotic Reinforcement Learning without
Reward Engineering,” 2019.

[62] K. Pertsch, Y. Lee, and J. J. Lim, “Accelerating
Reinforcement Learning with Learned Skill Priors,” Oct.
2020.

[63] Z. Wang et al., “Sample efficient actor-critic with
experience replay,” 5th Int. Conf. Learn. Represent. ICLR
2017 - Conf. Track Proc., Nov. 2017.

[64] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba,
“Scalable trust-region method for deep reinforcement
learning using Kronecker-factored approximation,” 2017.

[65] T. P. Lillicrap et al., “Continuous control with deep
reinforcement learning,” 4th Int. Conf. Learn. Represent.
ICLR 2016 - Conf. Track Proc., Sep. 2016.

[66] M. Xin, G. Wang, Z. Liu, and H. Wang, “Achieving
Sample-Efficient and Online-Training-Safe Deep
Reinforcement Learning with Base Controllers,” 2020.

[67] M. Andrychowicz et al., “Hindsight experience replay,”
2017.

[68] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms,” 2017.

[69] A. Franceschetti, E. Tosello, N. Castaman, and S. Ghidoni,
“Robotic Arm Control and Task Training through Deep
Reinforcement Learning,” arXiv, May 2020.

[70] B. Li, T. Lu, J. Li, N. Lu, Y. Cai, and S. Wang, “ACDER:
Augmented Curiosity-Driven Experience Replay,” Proc. -
IEEE Int. Conf. Robot. Autom., pp. 4218–4224, Nov. 2020.

[71] S. Balakrishnan, Q. P. Nguyen, B. K. H. Low, and H. Soh,
“Efficient Exploration of Reward Functions in Inverse

146 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146

Reinforcement Learning via Bayesian Optimization,” Nov.
2020.

[72] J. Ho and S. Ermon, “Generative adversarial imitation
learning,” 2016.

[73] E. Theodorou, J. Buchli, and S. Schaal, “Learning policy
improvements with path integrals,” 2010.

[74] J. Fan, H. Ba, X. Guo, and J. Hao, “Critic PI2: Master
Continuous Planning via Policy Improvement with Path
Integrals and Deep Actor-Critic Reinforcement Learning,”
Nov. 2020.

[75] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O.
Kroemer, “Learning to Compose Hierarchical Object-
Centric Controllers for Robotic Manipulation,” Nov. 2020.

[76] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S.
Levine, “COG: Connecting New Skills to Past Experience
with Offline Reinforcement Learning,” Oct. 2020.

[77] S. Tosatto, G. Chalvatzaki, and J. Peters, “Contextual
Latent-Movements Off-Policy Optimization for Robotic
Manipulation Skills,” Oct. 2020.

[78] S. Dai, W. Xu, A. Hofmann, and B. Williams, “An
Empowerment-based Solution to Robotic Manipulation
Tasks with Sparse Rewards,” Oct. 2020.

[79] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke,
“Towards vision-based deep reinforcement learning for
robotic motion control,” Australas. Conf. Robot. Autom.
ACRA, Nov. 2015.

[80] N. Sünderhauf et al., “The limits and potentials of deep
learning for robotics,” Int. J. Rob. Res., vol. 37, no. 4–5, pp.
405–420, Apr. 2018.

[81] R. Miyajima, “Deep learning triggers a new era in industrial
robotics,” IEEE Multimed., vol. 24, no. 4, pp. 91–96, Oct.
2017.

[82] F. Chervinskii, A. Rybnikov, D. Bogunowicz, and K.
Vendidandi, “Sim2Real for peg-hole insertion with eye-in-
hand camera,” arXiv, May 2020.

[83] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain Randomization for Transferring Deep
Neural Networks from Simulation to the Real World,” Mar.
2017.

[84] S. James et al., “Sim-to-real via sim-to-sim: Data-efficient
robotic grasping via randomized-to-canonical adaptation
networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2019-June, pp. 12619–12629, Dec.
2019.

[85] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine,
“End-to-End robotic reinforcement learning without reward
engineering,” arXiv. 2019, doi: 10.15607/rss.2019.xv.073.

[86] Z. Wu, W. Lian, V. Unhelkar, M. Tomizuka, and S. Schaal,
“Learning Dense Rewards for Contact-Rich Manipulation
Tasks,” Nov. 2020.

[87] Y. Wang, G. N. Narasimhan, X. Lin, B. Okorn, and D. Held,
“ROLL: Visual Self-Supervised Reinforcement Learning
with Object Reasoning,” Nov. 2020.

[88] J. Jin, D. Graves, C. Haigh, J. Luo, and M. Jagersand,
“Offline Learning of Counterfactual Perception as
Prediction for Real-World Robotic Reinforcement
Learning,” Nov. 2020.

[89] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai,
“RetinaGAN: An Object-aware Approach to Sim-to-Real
Transfer,” Nov. 2020.

[90] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M.
Khansari, “RL-CycleGan: Reinforcement learning aware
simulation-to-real,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., pp. 11154–11163, Jun.
2020.

[91] M. Hoffman et al., “Acme: A Research Framework for
Distributed Reinforcement Learning,” 2020.

[92] L. Fan* et al., “SURREAL: Open-Source Reinforcement
Learning Framework and Robot Manipulation
Benchmark,” 2018.

[93] M. Lucchi, F. Zindler, S. Mühlbacher-Karrer, and H.
Pichler, “Robo-gym -An Open Source Toolkit for
Distributed Deep Reinforcement Learning on Real and
Simulated Robots,” arXiv, Jul. 2020.

[94] D. Hein et al., “A benchmark environment motivated by
industrial control problems,” 2017 IEEE Symp. Ser.
Comput. Intell. SSCI 2017 - Proc., vol. 2018-Janua, pp. 1–
8, 2018.

