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Abstract: This paper provides a comprehensive introduction to Reinforcement Learning (RL), summarizes 
recent developments that showed remarkable success, and discusses their potential implications for the 
field of robotics. RL is a promising approach to develop hard-to-engineer adaptive solutions for complex 
and diverse robotic tasks. In this paper RL core elements are reviewed, existing frameworks are presented, 
and main issues that are limiting the application of RL for real-world robotics, such as sample inefficiency, 
transfer learning, generalization, and reproducibility are discussed. Multiple research efforts are currently 
being directed towards closing the sim-to-real gap and accomplish more efficient policy transfers methods, 
making the agents/robots learn much faster and more efficiently. The focus of this work is to itemize the 
various approaches and algorithms that center around the application of RL in robotics. Finally, an 
overview of the current state-of-the-art RL methods is presented, along with the potential challenges, future 
possibilities, and potential development directions. 
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1.  INTRODUCTION  
 

Reinforcement Learning (RL) has attracted a lot of 
attention in recent years with breakthroughs in multiple 
domains, including robotics.  

Industry 4.0 is characterized by modularity, inter-
operability, and real-time capabilities. To address the 
custom manufacturing demands, RL is a key catalyst for 
turning an industrial robot which is designed for a fixed 
and repetitive task into a ‘smart manipulator’, having the 
capability to learn and perform a desired task without any 
explicit task-specific controller. For that to happen, 
present-day controllers must be augmented with learning-
based solutions for motion planning, trajectory tracking 
control, collision avoidance, force control, and robotic 
vision.  

Recent studies show exciting progress for RL in 
robotics. Deep Learning (DL) has been applied 
successfully to many important problem areas, including 
computer vision, robotics and RL. The current challenges 
entail solutions for scaling up to complex tasks for robots, 
designing robust policy representations, and optimizing 
the computing time. 

Precise, collision-free, trajectory tracking with optimal 
control has been an active research area where progress is 
needed to a great extent [1, 2, 3]. A vast amount of 
research emerged for tracking applications using 
manipulator arms, from simple tasks such as pick-and-
place [4], peg-in-hole [5], cloth folding [6], to more 
complex tasks, such as tracking a trajectory on an irregular 
surface in a multi-robot system while avoiding self-
collisions, and cooperative handling operations [7]. 

_______________________  
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Currently there are several active RL subfields of 
research that enable breakthroughs in robotics with 
regards to path planning, trajectory tracking control, 
optimal control, robot impedance and force control, 
compliance control, and robot vision such as object 
tracking,  pose estimation, and pattern recognition [8]. 
Promising RL tasks have also been presented addressing 
the security and energy consumption of robots. In [9], 
Bozkurt et al. addressed the problem of security-aware 
robotic motion planning and Yin el al. proposed a machine 
learning-based approach for energy-efficient trajectory 
planning [10]. 

Despite these very promising results, applications of 
RL to industrial robotics are currently rather limited, and 
this can be attributed to the laborious efforts to setting-up 
the learning framework based on recent research, and to 
the lack of experimental evaluation of RL-based methods.  

To address the problem of reproducibility of deep RL 
research, Rupam et al. developed a learning task with an 
UR5 robotic arm and discussed the key elements of real-
world task setups [11].  

Robotic assembly is a manufacturing process in which 
a robot (equipped with tailored end-effectors) positions, 
mates, fits and assembles interchangeable parts or sub-
assemblies in a sequential manner resulting a functional 
product (Fig. 1). This process requires a high degree of 
repeatability, reliability, flexibility, and sequence 
planning. Typical robot-assembly operations also require 
compliance and force control that provide stable contact 
between the manipulator and the workpiece.  

Assembly sequences are predefined manually in the 
traditional robotic-assembly systems. In the context of 
smart factories, for a successfully assembled product, a 
RL-based assembly approach should be able to plan the 
correct sequences of assembly tasks, to plan individual, 
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Fig. 1. A typical setup of a robotic assembly cell. 

 
 
collision-free movements, to calculate the required forces 
and torques, and to estimate the pose of assembly parts. 
Since different end-effectors (modular grippers, electric 
screws, glue applicators, etc.) are needed in an assembly 
process, knowing the correct sequence of assembly tasks, 
the RL model should also make sure that the robot equips 
the proper end-effectors. All these requirements raise 
major difficulties for researchers, as robotic assembly 
continues to be one of the most challenging problems in 
the field of robotics research. Assembly tasks such as pick-
and-place, peg-in-hole, bolt screwing, slide-in-groove, 
stacking, pushing are well-covered in the literature. 

The research area for assembly sequence planning 
(ASP) has been active this past decade and solutions have 
been proposed based on various algorithms [12‒15] to 
improve assembly efficiency, reduce production costs, 
and shorten development cycles. In [16] the influence of 
assembly predicates on optimal assembly sequence 
generation, in terms of search space, computational time 
and possibility of resulting practically not feasible 
assembly sequences is discussed. Assembly predicates are 
used to test the possibility of assembling components in 
the defined sequence in the physical environment and they 
are defined based on the assembly connections, part 
geometries, and accessibility to perform the assembly 
operations. Recently, Watanabe and Inada [17] proposed 
a computational algorithm for searching the efficient 
assembly sequence and work assignment, in the context of 
future smart factories. A RL framework is used to search 
the assembly sequence through trial and error, and neural 
networks methods are used to transfer the past learning 
results to the new search to improve the search 
performance. 
 Learning from demonstration (LfD) is the paradigm in 
which agents acquire new skills by learning to imitate an 
expert [18, 19]. LfD enables robots to move away from 
repeating simple prespecified behaviors in constrained 
environments and toward learning to take optimal actions 
in unstructured ones without placing a significant burden 
on the operator [20]. Demonstrations can be performed by 
means of kinesthetic teaching, teleoperation, or passive 
observation.  
 This paper provides a summary of some of the main 
components for applying RL in robotics and includes 
state-of-the art RL methods and algorithms. The main 
contribution of this work is a better understanding that the 
design of appropriate policy representations is essential 
for RL methods to be successfully applied to real-world 
robots. 

This paper is organized as follows: section II describes 
key RL concepts and challenges. Next, section III focuses 
on RL models and algorithms specific to 6 DOF robot 
manipulators. Section IV presents recent developments in 
the field of robot vision. In Section V popular RL 
simulation frameworks and environments for robotics are 
presented. Section VI concludes the review. 
 
2.  RL ‒ KEY CONCEPTS AND TERMINOLOGY 
  

Reinforcement learning (RL) is prominently used for 
sequential decision-making. The RL problem can be 
formalized as an agent that learns an optimal policy by 
trial and error, to make decisions in an environment to 
optimize a given notion of cumulative rewards. After 
taking an action in a specific state, the agent (in the 
literature often referred to as a controller) receives a scalar 
reward from the environment, which provides an 
indication of the quality of that action. The function that 
indicates the action to take in a certain state is called a 
policy. By following a given policy and processing the 
rewards, the agent can build estimates of the accumulated 
reward (also called the return). The function representing 
the estimated return is known as the value function. 

Over the course of time, several types of RL 
algorithms and methods have been introduced and they 
can be divided into three groups: actor-only (picks actions 
greedily based on state values), critic-only (uses the policy 
function to pick actions) and actor-critic (uses both value 
and policy functions). 

The actor-critic method works as follows: at time step 
t the actor senses the current system state and applies an 
action based on policy (Fig. 2). This leads to a new system 
state and a numerical reward. Using this, the Temporal 
difference (TD) error is calculated. Using this error, the 
critic updates its estimate of the optimal value function. 
For continuous state and action spaces, such as in the case 
of a robot manipulator arm, the actor and critic need to be 
approximated. In contrast to critic-only methods, actor-
critic methods usually have good convergence properties, 
[21].  

Deep learning (DL), a subset of machine learning, 
utilizes a hierarchical level of artificial neural networks to 
carry out the process of machine learning. A deep neural 
network is characterized by a succession of multiple 
processing layers [22]. Deep Reinforcement Learning 
(DRL) combines artificial neural networks with a RL 
architecture that enables software-defined agents to learn 
the best actions possible in a virtual environment in order 
to attain their goals. 

 
 

 

 
 

Fig. 2. The actor-critic agent’s architecture [23]. 
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A Markov Decision Process (MDP) is a tuple 
(S, A, T, R, 𝛾), where S is the state space, A is a finite set 
of actions, T is the state transition probability 
distribution, R is the reward function, and 𝛾 is a discount 
factor 𝛾 ∈ [0, 1]. The agent learns a quality-function (Q-
learning) denoting the sum of rewards from state s onward 
if action a is taken, and as such the agent can choose what 
to do in state s by finding the action with the highest Q-
value. In the policy search, the agent learns a policy that 
maps directly from states to actions. More state-of-the-art 
methods and approaches will be presented in Section 3.5. 

In a model-based RL approach, the agent uses a 
transition model of the environment to help interpret the 
reward signals and to make decision about how to act (the 
agent learns a utility function).  In contrast, in a model-free 
RL the agent neither knows nor learns a transition model 
for the environment. Instead, it learns a more direct 
representation of how to behave, either through action-
utility learning (quality-function) or through policy search 
(policy mapping).  

Ebert et al. [24] proposed a self-supervised model-
based approach for a robotic manipulation task that 
generalizes effectively to never-before-seen tasks and 
objects (visual MPC). Recently, a novel approach to 
alleviate the data inefficiency of model-free RL by 
implicitly leveraging model priors, called Model-Based 
Baseline was proposed in [25]. 

On-Policy vs. Off-Policy: every RL algorithm must 
follow a certain policy to decide which actions to perform 
at each state. Algorithms that concern about the policy 
which yielded past state-action decisions are referred to as 
on-policy algorithms, while those ignoring it are known as 
off-policy. Q-Learning is an off-policy RL algorithm, 
considered as one of the very basic ones. In its most 
simplified form, it uses a table to store all Q-Values of all 
possible state-action pairs possible. SARSA is a slight 
modification of Q-Learning in order to make it an on-
policy algorithm. SARSA updates its Q-values using the 
Q-value of the next state s′ and the current policy's action 
a′′. Wang et al. proposed the backward Q-learning based 
SARSA algorithm which could enhance the learning 
speed and improve action quality and total performance 
[26]. 

Exploration vs Exploitation: the agent can try many 
different actions in many different states in order to try and 
learn all available possibilities and find the path which will 
maximize its overall reward (explores the environment), 
or the agent can use the information learned (exploit) to 
maximize the rewards it receives. Exploration gives more 
knowledge about the environment (leading to better future 
decisions), while exploitation chooses the best action to 
take given the current information (advancing to the 
current most promising direction) [27]. The best strategy 
involves sacrificing short-term rewards for more reward in 
the future, meaning that a balance between exploration 
and exploitation is needed, known as the exploitation-
exploration trade-off [28], which is fundamental to many 
RL algorithms.  

Imitation Learning is considered as an alternative to 
RL to solve sequential decision-making problems and 
aims to train a policy to mimic the behavior of an expert, 
given only the demonstrations from that expert. It is also 
closely related to the LfD approach. There are currently 

two main paradigms: behavior cloning (where a policy is 
trained only as a supervised-learning task) and inverse RL 
(the goal is to recover a reward function of the MDP that 
can explain the behavior of the expert demonstrator). 

 
2.1. Challenges that RL faces in robotics  

RL is applied in robotics, with techniques striving to 
reduce the required number of interactions with the real 
world. Such techniques tend to exploit models, be it 
estimating models and using them to plan, or training 
policies that are robust with respect to different possible 
model parameters. The high number of degrees of-
freedom of modern robots leads to large dimensional state 
spaces, which are difficult to be learned: example 
demonstrations must often be provided to initialize the 
policy and mitigate safety concerns during training. 
Bellman coined the term “Curse of Dimensionality” in 
1957 [30], when he explored optimal control in discrete 
high-dimensional spaces and faced an exponential 
explosion of states and actions. As the number of 
dimensions grows, exponentially more data and 
computation are needed to cover the complete state-action 
space. 

Some remaining barriers to the adoption of RL and 
DRL in robotics include the necessity for large training 
data and long training times. Banko and Brill [18] argued 
that the performance of learners can benefit significantly 
from much larger training sets (results observed for a 
natural language classification task). Generating training 
data on physical systems can be relatively time 
consuming, expensive, and sometimes unsafe. Moreover, 
in a simulated environment, it is possible to use learning 
algorithms running in parallel computation, to learn in a 
few hours from millions of trials. But in a real 
environment, it might take years to run these same trials. 

There is also the problem of under-modeling and 
uncertainty. Simulation with accurate models could 
potentially be used to offset the cost of real-world 
interaction. In an ideal setting, this approach would allow 
to learn the behavior in simulation and subsequently 
transfer it to the real robot. Unfortunately, creating a 
sufficiently accurate model of the robot and its 
environment is challenging and often requires extensive 
data samples (Fig. 3). As small model errors due to this 
under- 

 

 
 

Fig. 3. Large-scale data collection setup consisting of 8 Kuka 
IIWA robots, used to evaluate transfer learning after another  
setup was used to collect a dataset consisting of over 800,000 

grasp attempts [29]. 
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modeling accumulates, the simulated robot can quickly 
diverge from the real-world system. 

The solutions to these problems came from an active 
area of research, which enables the transfer of what has 
been learned in simulation to a real robot in the real world, 
known as sim-to-real transfer.  

Another way to reduce the number of real-world 
samples required for learning is to reuse information from 
previous learning episodes on other tasks, rather than 
starting from scratch. This falls under the umbrella of 
meta-learning or transfer learning. 

The reality gap represents all discrepancies between 
physics simulators and the real world that make 
transferring behaviors from simulation challenging. To 
learn a policy that transfers well, adding noise to the model 
during training, can make the policy more robust (data 
augmentation) or, policies can be trained that will work 
with a variety of models by sampling different parameters 
in the simulations (domain randomization).  

Mahmood et al. benchmarked RL algorithms on a 
robot arm and found that state-of-the-art learning 
algorithms are highly sensitive to their hyper-parameters 
and their relative ordering does not transfer across tasks, 
indicating the necessity of re-tuning them for each task for 
best performance [30]. 

Barriers addressing the safety concern: applying RL in 
robotics demands safe exploration which becomes a key 
issue of the learning process. While learning, the 
dynamics of a robot can change due to many external 
factors ranging from temperature to wear thereby the 
learning process may never fully converge. A possible 
solution is to learn low-level control policies for motion 
planning using soft robots [29] (manipulators with joint 
torque control or flexible joints), which are considerably 
safer to work with due to their compliant nature.  

The main robotic assembly challenge is the 
requirement of a high degree of repeatability, reliability, 
and flexibility. Two common approaches for RL 
practitioners for faster learning and better performance are 
the Hierarchical Task Decompositions and the Skill 
Reusability which ensure that the primary robotic task is 
divided into smaller and more tractable problems in order 
for the robot to learn skill policies for performing the 
lowest level of tasks and then use these skills as an action 
basis to perform the next level of tasks. Transfer learning 
tries to use experience from one set of tasks on a new task. 
Finding an abstract representation and generalizing across 
objects is a major aspect of learning to manipulate objects 
and adapt accordingly.  

Despite its impressive successes, RL and DRL still 
face significant obstacles, but it is, nonetheless, a very 
active area of research. As hardware improved (leading to 
specialized hardware e.g., GPU, TPU, or FPGA), and as 
RL and neural networks began to become more practical, 
they were increasingly found to be effective with real 
robotics applications.  

Another important development in the field of RL has 
been indirectly borrowed from vast successes of deep 
convolutional neural networks (CNN) in image feature 
extraction. Work in RL has been also accelerated by the 
availability of open-source simulation environments for 
developing and testing learning agents, which will be 
further addressed in Section V.  

3.  RL IN ROBOTICS 
  

The main motivation for using RL to teach robots new 
skills is that it offers three previously missing abilities: to 
learn new tasks that otherwise cannot be directly 
programmed, to learn to achieve optimization goals of 
difficult problems that have no analytic formulation by 
using only a known cost function (e.g., minimize the used 
energy for performing a task), to learn to adapt a skill to a 
new, previously unseen version of a task.  

The predominant approach to perception, planning, 
and control in robotics is to use approximate models of the 
physics underlying a robot, its sensors, and its interactions 
with the environment. These model-based techniques 
often capture properties such as the mass, momentum, 
shape, and surface friction of objects, and use these to 
generate controls that change the environment in a 
desirable way. In contrast, physics-based models are well 
suited for planning and predicting the outcome of actions. 
To function on a real robot, they require that all relevant 
model parameters are known with sufficient accuracy and 
can be tracked over time. This requirement poses overly 
challenging demands on system identification and 
perception. 

Robotic learning in the physical world is also 
constrained by time, by the risk of damaging the robot (or 
putting at risk the safety of its surroundings) and by the 
large data needed for training (expensive to collect). Data 
augmentation, transfer learning, and sim-to-real are 
efficient solutions to this problem. Sim-to-real is a 
technique often used to train in simulation before 
attempting to train with an actual robot, this way reducing 
the wear on physical equipment, and the training time.  

To speed up RL, Dai et al. [31] proposed a novel 
method for Self-Imitation Learning (SIL), in which an on-
policy RL algorithm uses episodic modified past 
trajectories, i.e., hindsight experiences, to update policies. 
The experiments show that episodic SIL can perform 
better than baseline on-policy algorithms, achieving 
comparable performance to state-of-the-art off-policy 
algorithms in several simulated robot control tasks. With 
the capability of solving sparse reward problems in 
continuous control settings, episodic SIL has the potential 
to be applied to real-world problems that have continuous 
action spaces, such as robot guidance and manipulation. 

A new domain adaptation algorithm called MPBO 
(Multi-Policy Bayesian Optimization) was introduced in 
[32] and uses simulated kinematic parameters variation. 
The simulated experiments showed that introducing 
variations in kinematics during training in simulation can 
benefit policy transfer. Hameed et al. [33] introduced a 
novel combination of scheduling control on a flexible 
robot manufacturing cell with curiosity based RL. In [34], 
the authors have analyzed how multi-agent reinforcement 
learning can bridge the gap to reality in distributed multi-
robot systems where the operation of the different robots 
is not necessarily homogeneous.  

One of the foremost requirements for manufacturing 
robots is precision, therefore, the RL model must provide 
a precise reference tracking. Extensive efforts have been 
made to improve the generalization ability of RL methods 
in robotics via domain randomization and data 
augmentation.  
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Recently, [35] proposed SOft Data Augmentation 
(SODA), a method that stabilizes training by decoupling 
data augmentation from policy learning. SODA is a 
general framework (which uses Soft Actor-Critic (SAC) 
as the base algorithm) for data augmentation that can be 
implemented on top of any standard RL algorithm. [36] 
proposed an adversarial RL framework, which 
significantly increases robot robustness over joint damage 
and malfunction in manipulation tasks. This enables the 
robot to be fault-aware of its joint working states. 

To apply RL on real-world robots in safety-critical 
environments, it should be possible to ensure safety during 
and after training. During RL training, applying the trial-
and-error approach to real-world robots operating in 
safety-critical environment may lead to collisions. To 
address this challenge, [37] proposed a Reachability-based 
Trajectory Safeguard (RTS), which leverages trajectory 
parameterization and reachability analysis to ensure safety 
while a policy is being learned. The method, RTS+RL, is 
demonstrated in simulation performing safe, real-time 
receding-horizon planning on three robot platforms with 
continuous action spaces. 
 
3.1. Motion planning and trajectory tracking control 

Control theory is still an active field of research 
addressing the motion planning problem by finding a 
solution that takes a robot from one configuration to 
another without colliding with an obstacle. The task of 
executing a sequence of actions to follow the path is called 
trajectory tracking control. A trajectory has time 
associated with each point on the path. A dynamic model 
(transition model) is needed for RL solutions and used for 
motion: knowing the configurations (given by the path), a 
function is used to compute the effects torques have on a 
configuration. 

Motion planning can be solved via graph search using 
cell decomposition, using randomized motion planning 
algorithms (that tend to first construct a complex but 
feasible path and then optimize it), or using trajectory 
optimization (which starts with a simple but infeasible 
path, and then iteratively pushes it out of collision). The 
simplest method to solve the optimization problem and 
find a path is to use a method known as gradient descent. 

In [3], the authors addressed the problem of solving 
manipulation tasks in the presence of obstacles and 
proposed a novel approach, called MoPA-RL (motion 
planner augmented RL),  which combines the strengths of 
both motion planning and RL by augmenting the action 
space of an RL agent with the capabilities of a motion 
planner. 

A path found by a search algorithm can be executed 
using the path as the reference trajectory for a PID 
controller, which constantly corrects for errors between 
where the robot is and where it is supposed to be, or via 
computed torque control, which adds a feedforward term 
that makes use of inverse dynamics to compute roughly 
what torque to send in order to make progress along the 
trajectory. 

A middle ground between open-loop control based on 
inverse dynamics and closed-loop PID control is called 
computed torque control (the torque the model thinks is 
needed will be computed, but afterwards it is compensated 
for model inaccuracy with proportional error terms). 

JAiLeR (Joint Space Control via Deep Reinforcement 
Learning), a deep RL-based approach to control a robot 
manipulator was presented in [38]. A deep neural network, 
trained via model-free reinforcement learning, is used to 
map from task space to joint space. Training in simulation 
showed that this simple approach can achieve accuracy 
comparable to that of classical techniques over a large 
workspace, in both simulation and reality. Advantages of 
this approach include automatic handling of redundancy, 
joint limits, and acceleration/ deceleration profiles. 

An approach to learn fast robot trajectories while 
satisfying kinematic joint constraints was presented in 
[39]. In contrast to penalizing constraint violations, this 
approach provides explicit safety guarantees. Dual-arm 
robots have attracted much attention in recent years and 
solutions emerged addressing the challenges of motion 
planning, e.g. Simultaneous Dual-Arm Motion Planning 
[40] which is a method to achieve efficient pick-and-place 
performance with a dual-arm robot in order to minimize 
its operation time. The path planning using the rapidly 
exploring random tree (RRT) enabled the dual-arm robot 
to execute the pick-and-place work without collisions 
between the arms. Motion planning for multi-robots was 
also addressed in [41‒43]. 
 
3.2. Optimal control 

Optimal control unites motion planning and trajectory 
tracking by computing an optimal trajectory directly over 
control inputs. Put in simple words, the trajectory 
optimization problem for kinematic paths is turned into 
true trajectory optimization with dynamics. To capture a 
detailed background introduction to optimal control, the 
authors recommend Liberzon’s book [44].  

The linear quadratic regulator (LQR) finds many uses 
in practice because of the ease of finding the optimal 
policy. With LQR, the optimal value function is quadratic, 
and the optimal policy is linear.  Variants of LQR are also 
often used for trajectory tracking. Another practical 
method called iterative LQR (ILQR), works by starting 
with a solution and then iteratively computing a linear 
approximation of the dynamics and a quadratic 
approximation of the cost around it, then solving the 
resulting LQR system to arrive at a new solution. ILQR is 
currently widely used at the intersection of motion 
planning and control [45].  

Dean et al. addressed the problem of optimal control 
and proposed a multistage procedure, called Coarse-ID 
control [46]. The method estimates a model from few 
experimental trials, estimates the error in that model and 
then designs a controller (using both the model and 
uncertainty estimate). Kapoor et al. [47] proposed an 
approach to express the desired high-level robot behavior 
using a formal specification language known as Signal 
Temporal Logic (STL) as an alternative to reward/cost 
functions. The proposed algorithm is empirically 
evaluated on simulations of robotic systems such as a 
pick-and-place using a robotic arm. 

Addressing the control stability concern, a normalizing 
flow control structure for robotic manipulation was 
recently introduced by Khader et al in [48]. Their results 
indicated that by inducing stable behavior, the state-action 
distribution can be significantly reduced without 
compromising the learning performance. 
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3.3. Force control, impedance, and compliance 
The most popular approaches for interaction control of 

robot manipulators are position/force control and 
impedance control. Force control methods address the 
problem of interaction between a robot manipulator and 
its environment, providing direct control of the interaction 
through contact force feedback and a set of dynamic 
parameters. The position/force control uses the impedance 
model to generate the desired force. 

The objective of the impedance control is to achieve 
the desired dynamic relationship between the end-effector 
position of the robot and the contact force, namely that the 
output force is as small as possible and that the position is 
close to its reference. The impedance model uses as input 
the position/velocity of the end-effector and outputs the 
exerted force.  

Recently, Perrusquía et al. presented a model-free PID 
admittance controller for robot manipulators that use RL,  
showing that the position error is minimized without 
knowing the environment or the impedance parameters 
[49]. Various methods to actively control compliance at 
the end-effector have been developed, such as impedance 
control [51, 52] operational space control [52], hybrid 
force-control [54, 55], and virtual model control [55].  
Impedance control is a well-established technique to 
control interaction forces in robotics. Active compliance 
is achieved through the active control of joints (position or 
torque) using feedback measurements of joint torques. A 
major benefit of active compliance is its ability to change 
the dynamic characteristics (e.g. stiffness and damping) in 
real-time. 

Based on compliance control, Roveda et al. proposed 
an approach that consists in two main control levels: 
iterative friction learning compensation controller and 
iterative force-tracking learning controller. The control 
procedure has been applied to an automotive industrial 
assembly task [56]. A methodology for designing joint 
impedance controllers based on an inner torque loop and 
a positive velocity feedback loop was presented in [57] for 
safely learning contact-rich manipulation tasks on 
position-controlled robots. 

Figure 4 shows the system architecture proposed in 
[5], having two control loops: the inner one is an adaptive 
compliance controller (a parallel position-force controller) 
and the outer one is an RL control policy. 

In [58], the authors proposed a learning framework for 
position-controlled robot manipulators to solve contact-
rich manipulation tasks (peg-in-hole tasks with hole-
position uncertainty). An off-policy model-free RL 
method was used, while bootstrapping  the training speed 

by using several transfer-learning techniques: sim-to-real 
and domain randomization. A learning-based force control 
framework combining RL techniques with traditional 
force control was proposed in [59]. 
 
3.4. Training models and data 

A model of the world can be useful in reducing the 
sample complexity of model-free RL methods by doing 
sim-to-real transfer: transferring policies that work in 
simulation to the real world (illustrated in Fig. 5). 

To learn hand-eye coordination for robotic grasping, 
Levine et al. trained a large convolutional neural network 
to predict the probability that task-space motion of the 
gripper will result in successful grasps [60]. Their large-
scale data collection setup consisted of 14 robotic arms 
running over the course of two months to collect 800,000 
grasp attempts. 

More recent techniques have experimented with fitting 
local models, planning with them to generate actions, and 
using these actions as supervision to fit a policy, then 
iterating to get better and better models around the areas 
that the policy needs. This has been successfully applied 
in end-to-end learning [61].  

Another way to reduce the number of real-world 
samples required for learning is to reuse information from 
previous learning episodes on other tasks, rather than 
starting from scratch, known as transfer learning. In RL, 
agents rely heavily on prior experience when learning a 
new task and a common approach in RL is to learn an 
“easy” skill before fitting the model to learn something far 

 
Fig. 5. Conceptual view of a sim-to-real transfer process as 
presented in [34]. One of the most common methods when 

training in simulation is domain randomization. 

Fig. 4. A variable compliance control approach for robotic assembly proposed in [5]: the system learns a control policy that defines 
motion-trajectory and force-control parameters of an adaptive compliance controller to control the robot arm. 
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more complicated. Pertsch et al. addressed the problem of 
agents that possess a full set of available skills (during 
learning, not all skills should be explored with equal 
probability). They proposed a deep latent variable model, 
SPiRL (Skill-Prior RL), that jointly learns an embedding 
space of skills [62]. 
 
3.5. State-of-the-Art DRL Algorithms in Robotics 

Policy gradient-based actor-critic algorithms are 
amongst the most popular algorithms in the reinforcement 
learning framework due to their advantage of being able 
to search for optimal policies using low-variance gradient 
estimates. 

The variety of DRL architectures is partitioned into 
two different branches: discrete action space algorithms 
(DAS), such as Deep Q-Network (DQN), and continuous 
action space algorithms (CAS), such as Deep 
Deterministic Policy Gradient (DDPG). Further, the CAS 
algorithms are divided into stochastic continuous action 
space (SCAS) and deterministic continuous action space 
(DCAS) algorithms. Figure 6 illustrates a hierarchical 
view of DRL algorithms. 

An actor-critic DRL agent with experience replay that 
is stable, sample efficient, and performs remarkably well 
in challenging environments and continuous control 
problems was presented in [63]. Replay is a valuable tool 
for improving sample efficiency. Experience replay has 
gained popularity in deep Q-learning where it is often used 
for reducing sample correlation.  

Another actor-critic method was proposed in [64], 
called ACKTR. It applies trust region optimization to 
DRL using Kronecker-factored approximation to the 
curvature. Work [65] presented an actor-critic, model-free 
algorithm based on deterministic policy gradient that can 
operate over continuous action spaces, called DDPG. 

DDPGwB was introduced in [66], as a novel algorithm 
that utilizes one or more base controllers to efficiently and 
safely learn challenging sparse-reward robotic tasks, with 
the learned state-based or image-based policies exceeding 
the performances of the base controllers. The DDPGwB 
algorithm is built upon DDPG and incorporates the 
controllers into stages of exploration, Q-value estimation 
as well as policy update.  

Hindsight Experience Replay (HER) [67] allows 
sample-efficient learning from rewards which are sparse 
and binary, avoiding the need for complicated reward 
engineering.   New   methods  for  RL,  called  PPO  were 

 
 

 
 

Fig. 6. The DRL topology. 

presented in [68], offering the possibility to alternate 
between sampling data through interaction with the 
environment, and optimizing a surrogate objective 
function using stochastic gradient ascent. Notable results 
can be achieved by combining model-free and model-
based DRL with Guided Policy Search (GPS) [69]. 

When the RL agent explores the environment 
randomly, it results in low exploration efficiency, 
especially in robotic manipulation tasks with high 
dimensional continuous state and action space. In [70] the 
Augmented Curiosity-Driven Experience Replay 
(ACDER) method was proposed, which leverages a new 
goal-oriented curiosity-driven exploration to encourage 
the agent to pursue novel and task-relevant states more 
purposefully and the dynamic initial states selection as an 
automatic exploratory curriculum to further improve the 
sample-efficiency. Their approach complements HER by 
introducing a new way to pursue valuable states. The 
policies trained in simulation for reach, push and 
pick&place tasks perform well on the physical robot 
without any additional fine-tuning. 

The problem of inverse RL is relevant to a variety of 
tasks including value alignment and robot LfD. [71] 
presented an inverse RL framework called Bayesian 
optimization-IRL (BO-IRL) which identifies multiple 
solutions that are consistent with the expert 
demonstrations by efficiently exploring the reward 
function space. Empirical results on synthetic and real-
world environments (model-free and model-based) show 
that BO-IRL discovers multiple reward functions while 
minimizing the number of expensive exact policy 
optimizations. 

Ho and Ermon [72], proposed a novel framework, 
called GAIL, for directly extracting a policy from data, in 
an inverse RL fashion. Another state-of-the-art policy-
search RL algorithm, called PI2 (policy improvement with 
path integrals), was proposed by Theodorou et al. in [73], 
for learning parameterized control policies based on the 
framework of stochastic optimal control with path 
integrals. The approach demonstrates significant 
performance improvements over gradient-based policy 
learning and scalability to high-dimensional control 
problems. 

A model-based RL framework called Critic PI2, which 
combines the benefits from trajectory optimization, deep 
actor-critic learning, and model-based reinforcement 
learning was presented in [74]. Empirical experiments 
demonstrated that Critic PI2 achieved a new state of the 
art in a range of challenging continuous domains, and that 
planning with a critic significantly increases the sample 
efficiency and real-time performance. 
 Focusing on the robotics field needs, [75] proposed the 
use of RL to learn how to compose hierarchical object-
centric controllers for manipulation tasks. Their approach 
has several advantages: the object-centric controllers can 
be reused across multiple tasks, and controller 
compositions are invariant to certain object properties. 
Experiments showed that the proposed approach leads to 
more guided exploration and consequently improved 
sample efficiency, and it enables zero-shot generalization 
to test environments and simulation-to-reality transfer 
without fine-tuning.  



142 L. Stan, A.F. Nicolescu and C. Pupăză / Proceedings in Manufacturing Systems, Vol. 15, Iss. 3, 2020 / 135146 

 

Another approach, called COG, [76] showed that prior 
data can be reused to extend new skills simply through 
dynamic programming. Addressing the skill transfer 
problem, a novel approach, called SPiRL (Skill-Prior RL) 
was recently proposed in [62]. A new contextual off-
policy RL algorithm, named LAtent-Movements Policy 
Optimization (LAMPO) was recently introduced in [77]. 
LAMPO can provide gradient estimates from previous 
experience using self-normalized importance sampling, 
hence, making full use of samples collected in previous 
learning iterations. 

To address the issues RL algorithms face when task 
rewards are sparse, a novel form of intrinsic motivation 
that can allow robotic manipulators to learn useful 
manipulation skills with only sparse extrinsic rewards was 
proposed in [78]. Through maximizing the mutual 
dependence between robot actions and environment states, 
namely the empowerment, this intrinsic motivation helps 
the agent to focus more on the states where it can 
effectively “control” the environment instead of the parts 
where its actions cause random and unpredictable 
consequences. Empirical evaluations in different robotic 
manipulation environments with different shapes of the 
target object demonstrate the advantages of this 
empowerment-based intrinsic motivation over other state-
of-the-art solutions to sparse-reward RL tasks.  

Developments in the robotic vision field were also 
enabled by state-of-the-art methods, such as presented in 
[79], where DRL base system for controlling a robotic 
manipulator with only visual perception was presented. 
Levine et al. presented a learning-based approach to hand-
eye coordination for robotic grasping in [60]. 
 
4.  ROBOT VISION 
 

In a simplified view, computer vision takes images and 
translates them into information, while robotic vision 
translates images into actions. Some of the main 
challenges for robotic vision are active learning, 
uncertainty estimation, and active manipulation on spatial 
embodiment. To get the full grasp of limits and potentials 
of robotic vision, refer to [80]. 

Vision-based RL and imitation learning methods 
incorporating deep neural network structure can express 
complex behaviors, and they solve robotics manipulation 
tasks in an end-to-end fashion. 

Miyajima presented the efficiency of DL when it is 
used for object detection, object pose estimation and robot 
grasp generation in [81]. The peg-hole insertion problem 
was addressed in [82] where DRL was used to learn the 
policy (which only takes RGB-D and joint information) 
end-to-end and then transfer the learned model to the real 
robot. They demonstrated that a purely eye-in-hand, 
image-based controller can be trained in simulation to 
perform peg-hole insertion with sub-centimeter accuracy.  

By focusing on the task of object localization problem 
in [83] it was demonstrated that an object detector trained 
only in simulation can achieve high enough accuracy in 
the real world to perform grasping in clutter. Image 
augmentation is crucial for successful transfer from 
simulation to the real-world. 

A novel approach to crossing the visual reality gap that 
uses no real-world data called  Randomized to- Canonical 

 
 

Fig. 7. Randomized simulation images are translated by a 
generator to a canonical simulation version and then used to 

train a robot grasping agent (top). The Sim-to-Real transfer of 
the agent (bottom) is presented in [84]. 

 
 
Adaptation Networks (RCANs) was presented in [84], and 
illustrated in Fig. 7. The authors demonstrated the 
effectiveness of the sim-to-real approach by training a 
vision-based closed-loop grasping RL agent in simulation, 
and then transferring it to the real world to attain 70% 
zero-shot grasp success on unseen objects, a result that 
almost doubles the success of learning the same task 
directly on domain randomization alone. 

An approach to RL was proposed in [85] without hand-
programmed reward functions by enabling a robot to learn 
from a modest number of examples of successful 
outcomes, followed by actively solicited queries (for only 
a tiny fraction of the states), where the robot shows the 
user a state and asks for a label to determine whether that 
state represents successful completion of the task. Their 
experiments show that the proposed method (VICE-RAQ) 
effectively learns to arrange objects, place books, and 
drape cloth, directly from images and without any 
manually specified reward functions, and with only 1‒4 
hours of interaction with the real world. 
 An approach capable of extracting dense reward 
functions algorithmically from robots’ high-dimensional 
observations, such as images and tactile feedback was 
presented in [86]. Their approach learns rewards by 
estimating task progress in a self-supervised manner. They 
demonstrated the effectiveness and efficiency of their 
approach on two contact-rich manipulation tasks, namely, 
peg-in-hole and USB insertion. The experimental results 
indicate that the policies trained with the learned reward 
function achieves better performance and faster 
convergence compared to the baselines. 

In [87], the authors presented ROLL (Reinforcement 
learning with Object Level Learning), a goal-conditioned 
visual self-supervised RL algorithm that incorporates 
object reasoning. The algorithm uses unknown object 
segmentation to ignore distractors in the scene for better 
reward computation and goal generation; occlusion 
reasoning is further enabled by employing a novel 
auxiliary loss and training scheme. 

A method for offline learning of counterfactual 
predictions was proposed in [88]. Their approach 
combines offline and online learning in the use of 
counterfactual predictions learned offline to accelerate 
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online policy learning. Experiments were conducted in 
both simulation and real-world scenarios for evaluation. 
 RetinaGAN was introduced in [89], as an object-aware 
sim-to-real adaptation technique which transfers robustly 
across environments and tasks, even with limited real data. 
Retina-GAN involves a CycleGAN that adapts simulated 
images to look more realistic while also resulting in 
consistent objects predictions. This method provides 
reliable sim-to-real transfer for tasks in diverse visual 
environments. Addressing the vision sim-to-real gap, [90] 
introduced RL-CycleGAN. They proposed a method to 
employ generative models to translate simulated images 
into realistic ones and introduced a RL-scene consistency 
loss for image translation, which ensures that the 
translation operation is more robust. 
 
5.  SIMULATION FRAMEWORKS AND 

ENVIRONMENTS  
  

 As mentioned in the Section II, a first approach to 
solve diverse robot arm manipulation tasks can be done 
mainly in simulation, but it can happen often for the model 
to under-perform in the real world. Another approach is to 
train directly on the real robot, but this is difficult and has 
several drawbacks. A third strategy, which is the most 
promising, is to combine the two approaches, by pre-
training models in simulation and continue learning in the 
real world.  

OpenAI Gym is probably the most popular 
environment for benchmarking DRL algorithms. It 
includes a suite of robotics environments based on the 
MuJoCo simulation engine. Multi-Goal RL tasks can be 
developed for pushing, sliding and pick & place with a 
Fetch robotic arm, as well as in-hand object manipulation 
with a Shadow Dexterous Hand [4]. 

Acme [91] is a framework for distributed RL 
introduced by DeepMind. The framework is used to build 
readable, efficient, research oriented RL algorithms. At its 
core, Acme is designed to enable simple descriptions of 
RL agents that can be run at various scales of execution, 
including distributed agents.  

Surreal [92], is an open-source, scalable framework 
that supports state-of-the-art distributed RL algorithms, 
known also as Scalable Robotic RL Algorithms. The 
framework decomposes a distributed RL algorithm into 
four components, which are a generation of experience 
(actors), storage of experience (buffer), updating 
parameters from experience (learner), and storage of 
parameters. It is a principled distributed learning 
formulation that accommodates both on-policy and off-
policy learning. 

Recently, Lucchi et al. introduced robo-gym, an open 
source and freely available framework (illustrated in Fig. 
8.) that allows to train DRL control policies in distributed 
simulations and later, to apply them directly on the real 
world robots [93]. As the toolkit will continuously grow, 
it will serve as a solid base for developing research within 
the field of DRL in robotics. 

Hein et al. designed a benchmark that bridges the gap 
between freely available, documented, and motivated 
artificial benchmarks and properties of real industrial 
problems. The Industrial Benchmark (IB) [94] is a useful 
addition to the set of  existing RL benchmarks, addressing 

 
 

Fig. 8. The robo-gym framework as presented in [93]. 
 

a particular set of properties, such as stochastic dynamic 
with high dimensional continuous state and action spaces, 
motivated by industrial control problems. 
 
6.  CONCLUSIONS  
 

 This work presents a comprehensive review of RL and 
DRL approaches focusing on their applications in robotic 
assembly. The main challenges RL faces in robotics such 
as the necessity of large training data, long training times, 
model uncertainty, safety concerns and reality gaps are 
discussed and solutions to overcome them are offered. 

For robotic manipulation, continuous action domain 
algorithms are the most effective and applicable. The 
capacity to self-optimize the controllers of robot arms is 
crucial in the Industry 4.0 setting. This capability is 
mandatory for handling the frequent changes that occur in 
the manufacturing process, to ensure high accuracy and 
precision, and therefore to guarantee cost efficiency and 
high quality of the manufactured products. For 
applications that require high positioning accuracy, fine-
tuning the controller for each task will be unfeasible, thus 
a self-learning capability will be crucial. 

In the context of smart factories, for a successfully 
assembled product, a RL-based assembly approach should 
plan the correct sequences of assembly tasks, the 
individual collision-free movements, compute the 
required forces and torques, and estimate the pose of 
assembly parts. Key strategies such as hierarchical task 
decompositions and skill reusability could ensure the 
successful use of RL-based methods in an industrial 
setting. 

Despite significant advancements of RL in simulated 
domains such as games, its potentially great influence on 
real robot applications is still limited. There is a need to 
learn highly complicated reward functions and methods to 
represent highly skilled behaviors and skills. This opens 
the possibility for a trend towards exploration of sample 
efficient and time efficient algorithms, solving both 
continuous state and action space problems. Addressing 
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the need for large, difficult to collect and expensive 
training data for learning, methods and approaches have 
emerged to facilitate the learning process for robots, such 
as data augmentation, domain randomization, and sim-to-
real transfer. 

This work includes a brief introduction to RL 
simulation frameworks and environments that are 
currently freely available and could enable further 
research opportunities. 

DL techniques have also changed many aspects of 
computer vision over the past decade and have been 
rapidly adopted into robotics as well. However, robotic 
perception, robotic learning, and robotic control are 
demanding tasks that continue to pose serious challenges 
on the techniques typically used. Nevertheless, the use of 
robotic vision in various robotic assembly tasks presents 
potential development directions leading to better 
performance and faster convergence compared to current 
the baselines. 

Answering the question whether or to what extent, can 
the knowledge of solving one task help in solving another, 
may help in achieving automatic transfer learning, 
including the source task selection, the mapping function 
design, and more. This will accelerate the learning process 
and could become an essential topic in RL. 
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