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Abstract: Surface roughness is playing very important role in the performance of finished part. 
Roughness measurements are typically done off-line after the part has already been machined, but 
recently the focus has changed to online monitoring. Through advancements in the fields of computers 
and sensors, it is now possible to measure and control the machining processes. With the advancement of 
artificial intelligence and intelligent algorithms new system can be build, that can describe complex, non-
linear, multi-variant machining processes. The main focus of this paper is to develop three different 
prediction models for predicting surface roughness of machined parts during milling. Prediction models 
will be able to predict surface roughness based on four inputs: feed rate, spindle speed, depth of cut and 
vibration. For the development of different intelligent prediction models MATLAB software tool will be 
used. Prediction models will be based on artificial neural networks (ANN) and adaptive neuro-fuzzy 
inference system (ANFIS). The results of developed prediction models will be compared to statistical 
regression analysis results and to experimental results. 
 
Key words: Machining, Milling process, Surface roughness, Artificial neural networks, ANFIS, Online 

monitoring system. 
 

1.  INTRODUCTION 1 
  

In recent years, due to increasing international and 
domestic competition, most manufacturers are 
increasingly focusing on the implementation of 
automation and flexible production as a means to 
increase productivity and improve the quality of finished 
products. Numerically controlled (NC) and computer 
numerically controlled (CNC) machined machines have 
been increasingly implemented in recent years to achieve 
complete automation of machining. NC and CNC 
machine tools require less operator attention and input 
during execution improve productivity and increase the 
quality of the workpiece surface [1]. 

Among many NC or CNC industrial machining 
processes, milling is one of the basic machining 
operations. End milling is the most common metal 
removal operation. It is widely used in a variety of 
manufacturing industries, including the aerospace and 
automotive sectors, where quality is an important factor 
in the production of slots, pockets and precision molds. 
The quality of the treated surface plays a particularly 
important role in milling itself, as a quality treated 
surface significantly improves the properties of the 
material such as fatigue strength, corrosion resistance 
and creep [2]. Surface roughness also affects some other 
properties, such as the contact surface, which causes 
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surface friction, wear, light reflection, heat transfer, and 
the ability to distribute and retain lubricant. Therefore, 
before manufacturing, the desired quality (roughness) of 
the final surface is usually determined and based on this, 
appropriate procedures are selected to achieve the 
required quality. 

The machining processes of milling are basically 
complex, non-linear, multi-variant and often exposed to 
various unknown external disturbances. The machining 
process is usually performed by a qualified operator that 
uses intuition-based decision-making methods and rules 
derived from experience. This process is usually not 
precise enough and in many cases product defects occur. 
For this reason, and for the realization of highly 
productive and flexible machining, a reliable, automated 
machining system with intelligent functions is required, 
which can also be called intelligent machining and 
represents Industry 4.0 [1, 2]. For the manufacture of 
such systems, it is necessary to implement appropriate 
methods of measuring the surface of the workpiece or 
wear of the machining tool, which will be able to monitor 
the operation of the machining process and find defects 
that occur on the machine (such as worn or broken tools 
and inadequate surface quality) and try to improve the 
process without some additional input from the machine 
operator. Recently, intelligent algorithms such as neural 
networks, genetic algorithms, particle swarm theories, 
etc. have been increasingly used to make such systems, 
which can be used to determine the surface roughness 
with sufficient accuracy based on input data from the 
machining system. As part of this paper, we developed 
three  different  models  using  artificial  neural  networks  
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and ANFIS that will be able to accurately predict the 
roughness of machined surface during the processing in 
milling. 
 
2. APPLICATION FIELD 
 

2.1. Surface roughness definition 
The final surface roughness obtained during 

machining can be considered as the sum of two 
independent influences. The first impact is the ideal or 
geometric finish, which is the result of the geometry and 
kinematic movements of the machining tool. The ideal 
finish can be calculated from the feed rate per tooth, the 
tool nose radius and the tool lead angle. Another impact 
is the natural finish resulting from tool wear, vibration, 
machine movement errors and the effects of the 
workpiece itself, such as inhomogeneity, edge formation 
and breakage at low cutting speeds [3]. 

For the purposes of quantitative comparison and 
analysis, it is useful to express the roughness of the 
treated surface with a single factor or index. Typically, a 
profile can be described using two sets of parameters: 
wavelength and surface height [4]. Wavelength 
parameters include wavelength and surface slope. The 
height of the surface can be described by the parameters 
Ra, Rq, Rz, etc. Ra represents the arithmetic mean 
roughness. Rq represents the mean square roughness. Rz, 
on the other hand, represents the highest height of 
roughness from the highest peak to the lowest valley. 
Since Ra and Rq are the two most frequently used 
parameters, we will use Ra in our paper to express the 
surface roughness of the treated surface. 

Ra can be calculated from the following equation: 
 

 ,  (1) 
 

where Ra is the arithmetic mean deviation from the mean 
line and L is the sampling length, y is the ordinate of the 
profile curve. 
 
2.2. Methods for measuring surface roughness 

Methods based on two different principles have been 
developed to control surface roughness: the contact 
principle and the non-contact principle. Contact-based 
instruments, commonly used to measure the roughness 
using so-called "styluses", are the most common in 
practice. Instruments operating in non-contact mode are 
based on the principles of optical interferometry, 
displacement, vibration, sound reflection or electron 
beams. It is very important that measuring instruments 
for measuring surface roughness are as accurate, reliable, 
inexpensive, fast and non-destructive as possible. 

In most industrial environments, surface roughness 
inspection and assessment is performed on the basis of 
off-line methods using a touch probes or on the basis of 
on-line methods by operators.  

Off-line measurement usually requires the removal of 
the workpiece from the machine, its cleaning and testing 
with an off-line instrument to measure surface roughness. 
The disadvantage of this process is that it is time 
consuming and uneconomical, as after the measurement, 
the machine and the workpiece need to be readjusted and 
prepared for further processing.  

On-line measurements also require interruption of 
machining and cleaning of the workpiece before 
measurement. Even if portable instruments that do not 
require changing the machine settings have been used to 
measure the workpiece, the machine must still be stopped 
and the workpiece cleaned before the measurement itself. 
If the workpiece does not meet the specifications, the 
workpiece or the entire batch may be discarded or 
recovered. Due to the aforementioned disadvantages, the 
above methods are not suitable and flexible for real-time 
process control and full automation. Therefore, to solve 
these problems, so-called "in-process" methods are 
desirable, which are able to measure the roughness of the 
treated surface during the treatment itself. 

In recent years, intelligent algorithms (such as neural 
networks, ANFIS, genetic algorithms, etc.) have been 
increasingly used to determine the roughness of the 
machined surface, which are able to determine the 
quality of the treated surface from signals obtained from 
sensors [5, 6].  

The use of cutting parameters and other properties 
such as workpiece hardness, tool geometry, cutting time 
and acceleration as inputs to neural networks to predict 
surface roughness gave very accurate results [7, 8]. 
Benaros et al. [9] was able to predict the roughness of the 
machined surface during CNC milling using neural 
networks and the Taguchi method. The results of the 
experiment showed that the feed rate, the vertical 
component of the cutting force Fx, the depth of cut and 
the use of coolant are the parameters that most affect the 
quality of the surface roughness. Risbood et al. [10] was 
able to determine the roughness of the machined surface 
using neural networks by measuring cutting force and 
vibration.  

They proved that the use of neural networks could 
model surface roughness and vibration in machining 
processes. Huang et al. [11] presented in his work the use 
of neural networks in combination with the Poka-yoke 
method for predicting surface roughness in end-milling. 
In their study, cutting parameters and cutting speed were 
used as input values. 

The use of intelligent algorithms in optimizing 
cutting conditions has high accuracy. Predicting surface 
roughness in milling using genetic programming has 
shown that roughness is particularly sensitive to feed 
rate. Brezocnik et al. [12] in his work demonstrated the 
use of genetic programming to construct a model that 
included three cutting parameters, in addition to which 
vibrations provided high accuracy for predicting surface 
roughness. Oktem et al. [13] demonstrated that the link 
between genetic programming and response surface 
methodology has improved cutting conditions such as 
feed rate, cutting speed and axial depth of cut. They 
managed to optimize the quality of the treated surface 
area by up to 10%. 

Soft logic has also established itself as an accurate 
method for predicting surface roughness in machining 
processes. The use of an adaptive neural network-based 
fuzzy inference system (ANFIS) to predict surface 
roughness in milling yielded very small errors between 
predicted and measured values (approximately 4%) [14, 
15]. 
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3. METHODS USED 
 

3.1. Adaptive neuro-fuzzy inference system  
Adaptive neuro-fuzzy inference system (ANFIS) is an 

integration system that uses neural networks to optimize 
a soft decision-making system. ANFIS consists of a 
series of soft "if-then" rules with corresponding 
membership functions to generate specific input-output 
pairs. The initial soft rules and membership functions are 
first determined using human expertise on the results to 
be modeled. ANFIS can then change these soft "if-then" 
membership rules and functions to reduce the output 
error rate or explain the I/O relationship of a complex 
system [16]. Two soft if-then rules below describe the 
ANFIS architecture: 
 

 If (x is A1) and (y is B1) then (z1 = p1x + q1y + r1), 
 If (x is A2) and (y is B2) then (z2 = p2x + q2y + r2), 
 

where x and y are inputs, Ai and Bi are soft sets, zi (i = 1, 
2) are outputs within the soft range defined by soft rules, 
and pi, qi, and ri are parameters defined during the 
training process. To implement these two rules, the 
ANFIS architecture has five layers as shown on Fig. 1. 
 Layer 1: Input membership function 

The first layer is used to convert the input numeric 
values to soft values, and all nodes of the first layer are 
flexible. The outputs from the first layer are membership 
estimates of input values, which can be represented by 
the equations 2 and 3: 
 

 ,  (2) 
 

 , (3) 
 

where  and  represent soft membership 
functions. 
 Layer 2: Rules 

The nodes of the second layer are fixed nodes. They 
are denoted by M and they act as multipliers. The outputs 
of the second layer represent the soft intensities ( ) of 
each rule and can be expressed by the equation (4): 
 

 . (4) 
 

 Layer 3: Normalization 
In the third layer, the nodes are also fixed. They are 

denoted by N and they play the role of normalizing the 
soft intensities from the previous layer. The 
normalization factor is calculated as the sum of the 
weighting functions. The outputs of this layer are called 
 
 

 
 

Fig. 1. ANFIS architecture. 

normalized soft intensities and are calculated by the    
Eq. (5). 
 
 .      (5) 

 

 Layer 4: Output membership function 
The nodes in the fourth layer are flexible. The outputs 

of the fourth layer can be calculated using the Eq. (6): 
 

 .  (6) 
 
 Layer 5: Output 

The fifth layer consists of only one fixed node, 
denoted by S. This node calculates the sum of the input 
signals. The total output of the fifth layer can be 
expressed by the following equation: 
 

 .  (7) 

 
After making the ANFIS model, his training follows. 

In the ANFIS training process, a hybrid learning 
algorithm is used to adjust the parameters of membership 
functions, which works on the principle of gradient 
descent and least squares estimation. The outputs of the 
nodes move forward until the layer of the output 
membership function and consequently also the 
parameters are identified by the least squares estimate. 
 
3.2. Artificial neural network 

Neural networks are made up of simple elements 
whose action is inspired by biological nervous systems. 
The operation of the system of these elements largely 
depends on the connections between the elements. 
Neural networks can be trained to perform certain 
functions by adjusting the values of connections 
(weights) between elements. 

Artificial neural networks (NM) are made up of 
artificial neurons. Artificial neurons try to mimic the 
functioning of natural neurons found in the nervous 
systems of animals and are the basic cell of the nervous 
system. The artificial neuron works by multiplying the 
inputs with the appropriate weights and then summing 
the obtained products and comparing them with the 
threshold over the threshold function. 

Artificial neural networks consist of several layers or. 
levels of neurons. Neurons can be located in one or more 
hidden layers and one output layer. Such neural networks 
can approximate any nonlinear function, and only when 
initial weights are chosen to prevent trapping in local 
minima. Multilayer NMs are composed in such a way 
that the output signals of one layer enter as input signals 
into the next layer of neurons. An example of a two-layer 
NM structure is shown in Fig. 2. 

The output of the NM can be calculated with Eqs. (8) 
and (9). 

 

 ,  (8) 
 

 .  (9) 

 
The process of learning multilayer NM is done using 

the back-propagation rule (BPG).  
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Fig. 2. Two-layer ANN structure. 

 
The deviation Ep is calculated, which is equal to the 

sum of the squares of the difference of the p-th desired 
response vector  on the p-th input sample and the 
output vector of the L-th level of the neural network  
for r = 1…l on the same p-th input pattern.  

The deviation can be calculated by the following 
equation: 
 

 .  (10) 
 

The NM weight adjustment process is carried out 
until the deviation Ep over all input samples p is 
minimized. 

Calculating weight change during NM learning is 
calculated in two different ways for the output and 
hidden layer of neurons.  

Change in the weights of the output layer of neurons 
is calculated using the Eq. (11). 
 

 ,  (11) 
 

where  can be calculated by Eq. (12). 
 

 .  (12) 
 

The weights of the output level of the neural network 
are then calculated using the Eq. (13). 
 

 .  (13) 
 

The change in the weights of the hidden layer of 
neurons is calculated by Eq. (14). 
 

 , (14) 
 

where  is calculated using the following equation: 
 

 .  (15) 
 

The weights of the hidden level of the neural network 
are calculated using the following Eq. (16). 
 

 .  (16) 
In the above equations, εL and εJ are learning 

constants whose values are set according to a specific 
case. 

3.3. Statistical regression model 
Regression analysis is a statistical method that checks 

the influence of independent variables on a dependent 
variable. There are several types of regression analysis, 
the simplest and most commonly used is linear 
regression analysis. 

Variables in regression analysis are named according 
to their role. In our work we will use one dependent 
variable and one or more independent variables. 
Dependent variables will be denoted by Y, and 
independent variables by X. Depending on the 
measurement properties of the dependent variable, we 
must select the appropriate type of regression analysis 
(linear, logistical, ordinal, …). The regression model is 
determined on the basis of the regression equation 17 
[19]: 
 

 ,  (17) 
 
where b is the regression coefficient and ε is the constant 
of the model error. 

A statistical regression model for prediction can be 
constructed using four steps: 
1. Determination of the regression model 
2. Determination of R and R2 
3. Determine if R is statistically significant 
4. Determine the importance of variables for forecasting 

To develop the model, we will use the general 
regression equation 18: 
 

 ,  (18) 
 

where  is the predicted value of the measurable 
variable,  the regression coefficients for the 
corresponding variables and  the regression constant. 
The regression equation is determined using the least 
squares criterion, which requires minimization of 

. The regression equation can also be written 
with the equation 19: 
 

 ,  (19) 
 

where  is the predictors and criteria transformed into z 
estimates and β are beta coefficients. 

R can be expressed by the following equation 20: 
 

 ,  (20) 
 

where R is the correlation coefficient and  is the 
predictive variable. 
 
4.  DEVELOPMENT OF PREDICTION MODELS 
 

Prediction models will predict the roughness of the 
machined surface based on the following input data: 
 Machine spindle speed [rpm], 
 Tool feed speed [mm / min], 
 Cutting depth [mm], 
 Vibration. 

For development of intelligent algorithm models, we 
will use a training data set consisting of 400 data 
samples. The performance of the developed models will 
then be compared with a test data set consisting of 92 
data samples and finally with a flexible test data 
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consisting of 36 data samples. For the construction of 
prediction models, we used the experimental results 
obtained from [1]. 

Intelligent tool wear prediction algorithms will be 
developed in the Matlab software tool, and a statistical 
regression model will be developed in the Microsoft 
Excel software tool. 

 
4.1. ANFIS 

ANFIS is based on a combination of soft logic and 
neural networks. The model for predicting surface 
roughness will be developed in the Matlab software tool, 
using the extension "Fuzzy Logic ToolboxTM" [20]. 

The development of the ANFIS forecasting model 
consisted of the following steps: 
1. Transfer of experimental data to Matlab, 
2. Conversion of data into vector/matrix form, 
3. Upload training and test data to Neuro-Fuzzy 

Designer, 
4. Creating fuzzy inference system (FIS), 
5. Fault tolerance selection and FIS training, 
6. FIS testing. 

The data was first saved in the form of a csv file in 
the Microsoft Excel software tool and named as follows: 
Train_data.csv, Test_data.csv and Flex_data.csv. 

Data was transferred to the Matlab environment using 
the "readtable" command, which saves the data in the 
form of a table in Matlab. 

The data stored in tabular form is not suitable for 
creating a model in the "Neuro-Fuzzy Designer" 
extension. Therefore, the data from the previous step had 
to be converted to vector / matrix format. The data were 
first divided into input data consisting of 4 inputs 
(Spindle Speed, Feed Rate, Depth of Cut, Vibration) and 
output data consisting of one output data (Ra). In Matlab, 
we used the "table2array" command to convert data from 
a table to a matrix / vector. 

The ANFIS model will be created using the "Neuro-
Fuzzy Designer" extension in the Matlab software tool. 
In order to successfully create a model, it is necessary to 
first load the relevant learning data. We did this using the 
“Load Data” command, which stored learning data with 
900 data samples under “Training” and test data with 92 
samples under “Checking”. Data for flexible testing with 
36 samples were not used in the development and 
learning of the ANFIS model. 

FIS creation is possible using the "Generate FIS” 
function in the "Neuro-Fuzzy Designer" window. FIS can 
be created using two different options: "Grid partition" 
and "Sub. clustering". To make our model, the "Sub. 
clustering" option was used, for which the following 
parameters needed to be changed to create a model: 
Range of influence and Squash factor. 

To create the model, ten different combinations of 
parameter values were used, which are shown in Table 1. 

The developed FIS model needed to be properly 
trained for better performance in order to give better 
results when predicting. We did this in the "Train FIS" 
pane inside "Neuro-Fuzzy Designer". We can choose two 
different optimization methods for training: Hybrid and 
BPG. We chose the hybrid optimization method to train 
our model, as we tested both methods and found that 
using the hybrid method gives much better results. 

Table 1 
Selected values of parameters for ANFIS model 

 

No. Range of influence Squash factor 

1 0.5 1.25 

2 0.3 1.25 

3 0.1 1.25 

4 0.8 1.25 

5 0.5 1 

6 0.5 0.5 

7 0.5 1.5 

8 0.1 1.8 

9 0.1 2 

10 0.2 2 

Table 2 
FIS training results 

 

No. Training RMSE Checking RMSE 

1 0.0017 0.0025 

2 0.0008 0.0013 

3 0.001 0.0002 

4 0.097 0.097 

5 0.0005 0.0004 

6 0.0003 0.0004 

7 0.0045 0.0097 

8 0.00012 0.00017 

9 0.00015 0.00017 

10 0.0023 0.0028 

 
Training was performed on all ten created models 

shown on Table 1. Table 2 shows the test results. The 
second line shows the relative error with respect to the 
training data (Training RMSE), and the relative error 
with respect to the test data (Checking RMSE). The last 
line shows the number of epochs we needed to learn the 
model to the optimal value. 

From the results, we can see that we got the smallest 
error when using the model with sequence number 8, 
which had the smallest RMSE errors. 
 
4.2. Artificial neural network (ANN) 

Creating an ANN model for prediction consisted of 
the following steps: 
1. Transfer of experimental data to Matlab. 
2. Conversion of data into vector / matrix form. 
3. Neural network initialization and configuration. 
4. Neural network training. 
5. Neural network testing. 

The first and second steps have already been 
described in more detail in the development of the 
ANFIS model, so we will not describe them in detail 
here. 

To create a neural network, we used the 
feedforwardnet(X) command, which creates a 
feedforward neural network with X number of neurons in 
the hidden layer. We developed four different neural 
networks, compared their performance and selected the 
neural network that best predicted the roughness of the 
treated surface. We created neural networks with 5, 10, 
50 and 100 neurons in the hidden layer. After the 
successful  construction   of  the  neural  network,  it  was  
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Fig. 3. Structure of developed ANN. 
 
necessary to determine the number of parameters of the 
neural network so that it will work in accordance with 
our expectations. For our case number 4 was set as the 
number of inputs. Finally, the neural network needed to 
be configured based on the input experimental data, 
which we did using the “configure” command. Figure 3 
shows the structure of the created neural networks. 

The response of the constructed neural networks was 
tested using experimental training data used to teach the 
neural network. 

From the test results, we found that the best results 
were obtained using a neural network with 50 neurons in 
the hidden layer, which had an average relative error of 
0.0021 after 593 learning epochs. 
 
4.3. Statistical regression model 

A statistical regression model for prediction was 
constructed using the following equation 21: 
 

 ,  (21) 
 
where Yi is the average surface roughness value, X1i is the 
spindle speed, X2i is the tool feed rate, X3i is the cutting 
depth and X4i is the absolute average of the vibrations per 
revolution. 

For the construction of a statistical regression model, 
we used the experimental results obtained from [1]. The 
experiment included 4 different machine spindle speeds 
(750, 1000, 1250 and 1500 rpm), four different feed rates 
(152, 305, 457 and 610 mm / min) and 3 different cutting 
depths 0.25, 0.76, 1.27 mm). he statistical regression 
model was created in Microsoft Excel using the Data 
Analysis  function,  which enables the calculation of beta 

 
Table 3 

Regression statistics 
 

Multiple R 0.918337298 

R Square 0.843343393 

Adjusted R Square 0.841756997 

Standard Error 0.36113793 

Observations 400 

 
coefficients from which the equation of the regression 
model for prediction can be derived. 

Statistical analysis was performed on 400 samples of 
test data. Regression statistics are shown in Table 3.  

 

The equation 22 represents the developed regression 
model. 
 

 
   (22) 
 
5. RESULTS 
 

This chapter will present the responses and 
effectiveness of the developed models for predicting the 
roughness of machined surface, which were developed in 
the previous chapter.  

To determine the prediction efficiency of the 
regression model, we used the calculation of the relative 
error using equation 23: 
 

 . (23) 

 

where  is the relative error of each data sample,  is 
the actual measured surface roughness value and  is 
the predicted surface roughness value obtained from the 
prediction model. The efficiency of the whole data 
sample will be calculated by the equation 24: 
 

 .  (24) 
 

where  is the relative error of the whole data sample 
and  is the data sample size. 
 
5.1. Results of the ANFIS model 

Figure 4 shows the relative testing error [%] of the 
ANFIS model. The graph above shows the relative error 
of each of 400 training data samples. The center graph 
shows the relative error of each of 92 testing data 
samples. The graph below shows the relative error of 
each of 36 data samples for flexible testing data. 

The average relative error when using training data 
was 0.0029 %, which means that the accuracy of the 
ANFIS model was 99.9971%. The average relative error 
when using testing data was 0.0039 %, which means that 
the accuracy of the ANFIS model was 99.9961%. The 
average relative error when using flexible testing data 
was 7.2277%, which means that the accuracy of the 
ANFIS model was 92.7723%. 

 

5.2. Results of the ANN model 
Figure 5 shows the relative testing error of the ANN 

model with 50 neurons in hidden layer. Results will be 
represented in three graphs. 
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Fig. 4. Results of the ANFIS model. 

 

 
Fig. 5. Results of the ANN model. 

 
The graph on Figure 5a shows the relative error of 

each training data sample. The graph on Figure 5b shows 
the relative error of each test data sample. The graph on 
Figure 5c shows the relative error of each data sample for 
flexible testing data. 

The average relative error when using training data 
was 1.0105 %, which means that the accuracy of the 
ANN model was 98.9895 %. The average relative error 
when using testing data was 1.3435%, which means that 
the accuracy of the ANN model was 98.6565%. The 
average relative error when using flexible testing data 
was 10.9968 %, which means that the accuracy of the 
ANN model was 89.0032%. 

5.3. Results of the statistical regression model 
Figure 6 shows the relative testing error [%] of the 

regression model. The graph on Figure 6a shows the 
relative error of each training data sample. The graph on 
Figure 6b shows the relative error of each test data 
sample. The graph on Figure 6c the relative error of each 
data sample for flexible testing data. 

The average relative error when using training data 
was 14.67%, which means that the accuracy of the 
regression model was 85.33%. The average relative error 
when using testing data was 12.54 %, which means that 
the accuracy of the regression model was 87.46%. The 
average relative error when using flexible testing data 
was 34.11%, which means that the accuracy of the 
regression model was 65.89%. 
 
6. CONCLUSION 
 

As part of the paper, various models for predicting 
the roughness of the machined surface during processing 
based on the following input data were developed: 

1. Machine spindle speed [rpm], 
2. Tool feed speed [mm / min], 
3. Cutting depth [mm], 
4. Vibration. 
Three different prediction models were developed: 
1. ANFIS model, 
2. ANN model, 
3. Statistical regression model. 
 
Models were created based on 400 samples of 

experimental training data. The ANFIS model and the 
neural network model were developed in the Matlab 
software tool, and the statistical regression model was 
developed in the Microsoft Excel software tool. 

The efficiency and accuracy of the models were first 
analyzed using training data, which contained 400 data 
samples,   on   the  basis  of  which  we  developed  these 

 

 
Fig. 6. Results of the regression model. 
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Table 5 
Results of operation of prediction models 

 Error [%] Accuracy [%] 

Train Test Flex Train Test Flex 

ANFIS 0.0029 0.0039 7.2277 99.9971 99.9961 92.7723 

ANN 1.0105 1.3435 10.9968 98.9895 98.6565 89.0032 

Reg. 14.67 12.54 34.11 85.33 87.46 65.89 

 
models. The responses of the models were compared 
with the measured experimental values of the roughness 
of the machined surface. The operation of the developed 
models was then analyzed using testing data containing 
92 data samples and finally using flexible testing data 
containing 36 data samples. Table 5 shows the results of 
the operation of prediction models. 

When testing the performance of developed 
prediction models, we found that roughness is best 
predicted by the ANFIS model, which predicted with an 
accuracy of 99.9971% when using training data, with an 
accuracy of 99.9961% when using test data and with an 
accuracy of 92.7723% when using flexible testing data. 

All developed intelligent models (ANFIS and ANN) 
had much better accuracy than the statistical regression 
model.  

As part of the paper, the rapid construction, training 
and analysis of the operation of various prediction 
models in the Matlab software tool was demonstrated. 
The developed ANFIS and NM models have a very high 
accuracy when using testing data compared to statistical 
regression model. The ANFIS model and the NM model 
also managed to predict the roughness of the treated 
surface very well on the flexible testing data, which did 
not match the training data the most. 
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