

Proceedings in Manufacturing Systems, Volume 19, Issue 1, 2024, 17-24

ISSN 2067-9238

ON FLEXIBLE MANUFACTURING SYSTEM CONTROLLER DESIGN AND

PROTOTYPING USING PETRI NETS AND MULTIPLE MICRO-CONTROLLERS

Konstantinos PETROPOULOS1, George-Christopher VOSNIAKOS2,*, Emmanuel STATHATOS3

1) MSc graduate student, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece
2) Prof., Manufacturing Technology Laboratory, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece.

3) Dr, Senior postgraduate researcher, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece.

Abstract: This work aims to design the central controller of a Flexible Manufacturing System and test it

beyond simulation. The FMS controller is modelled through standard PN formalism tested by simulation

before subsequent controller prototyping. Then, prototypes are implemented in two alternative schemes.

First, by a central controller and local micro-controllers of ArduinoTM-type, in a master-slave

configuration, communication of micro-controllers with each other materializing through asynchronous

data transmission over the I2C bus. Second, by replacing local controllers by light emitting diodes (leds)
and switches for ‘receive’ and ‘send’ signals respectively. The central controller was implemented in

microcontroller language by direct conversion from the respective simulated and analyzed Petri Net.

Execution of the developed control programs was performed and evaluation proved that the developed

prototyping method is efficient, low cost and scalable in a system-commissioning context.

Key words: Flexible Manufacturing System; Petri Nets; Microcontroller; I2C protocol; serial

communication; Discrete events; Hierarchical controller.

1. INTRODUCTION 1

There are several approaches in designing the

controller of a Flexible Manufacturing System (FMS), all

linked to the discrete event paradigm according to a

formalism that may range from Petri Nets (PNs) to rule-

based and fuzzy sets [1].

PNs have been the prominent approach to FMS

controller design due to their theoretically founded

ability to model complex discrete event systems

effectively. They consist of places representing

conditions or states of machines, buffers, and parts

within the system, transitions representing events or
actions pertaining typically to manufacturing processes

or part handling processes, and tokens representing the

presence of a resource or the activation of a state, thereby

modelling the dynamic state changes of the system. PNs

enable various types of analysis to ensure the system's

correctness and performance: reachability, liveness,

boundedness and deadlock detection. In capturing

dynamics of real-time control of FMS elements

characterizing queuing network configuration and

scheduling policy depend on the current state of the FMS

[2]. Furthermore, a system model can be enriched with

elements collected from the context, which optimizes the
design of constraints that can then be integrated to

control frameworks for synthesis and code generation[3].

Controller design using PNs encompasses different

research approaches. Several typical methods for

structural simplification techniques of FMS supervisory

* Corresponding author: Heroon Polytehniou 9, Athens 15773,

Greece

Tel.: +30 210 7721457.

E-mail address: vosniak@central.ntua.gr (G.-C. Vosniakos).

controllers have been developed in [4]. Optimal PN

controllers for a special class of systems with simple

sequential processes with so-called ξ-resources were

developed in [5]. A single control place for each
concurrent process of a PN model was designed in [6]

optimally enforcing liveness and ensuring high resource

utilization. Place-Transition controller is designed for

each concurrent process of the system in [7] creating

extra states in the reachability graph so that the resulting

supervisory structure controls deadlock occurrence

without restricting system operation.

Design is followed by physically implementation of

the controller, e.g. making use of Programable Logic

Controllers (PLCs), industrial PCs or other types of

computing equipment and then, commissioning and
testing it. Commissioning an FMS controller involves

several steps to ensure that the system operates correctly

and meets the required performance standards. Within

commissioning, testing takes prominent place, involving

functional, end-to-end, performance, safety / reliability

and Final Acceptance testing.

Physical commissioning is a costly process, thus it

makes sense to perform most of the testing in simulation

mode or even in a hybrid ‘hardware-in-the-loop’ mode,

as a step of Virtual Commissioning (VC) [8]. A brief

State-of-the-Art (SoA) of FMS controller testing within

VC is provided in Section 2. In this work, an FMS that is
small enough to be comprehended and large enough to

justify non-trivial control is used as a testbed, see Section

3. Its controller is developed using classical PNs and

dedicated simulation software, see Section 4. The FMS

controller is implemented on microcontroller hardware to

be physically tested and the FMS station controllers are

replaced by simple microcontrollers or a switch /

18 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724

photodiode pair. These schemes are presented in Section

5. Conclusions and outlook are articulated in Section 6.

2. SoA FOR FMS CONTROLLER TESTING IN VC

A real-time event-based digital platform is presented

in [9] allowing all physical objects, virtual models, and

industrial systems to communicate and integrate with

each other. As another example, a real-time co-

simulation platform for VC included the integration of

powerful technology-specific simulation solutions based

on integration interfaces and a real-time co-simulation

architecture based on partitioning, parallelization,

synchronization and data exchange mechanisms [10]. A

methodology is presented in [11] for the development

and implementation of virtual and hybrid scenarios by

using highly integrated, digital manufacturing tools and

was implemented successfully by virtual and hybrid
commissioning scenarios to develop smart factories.

A recent VC trend in has been the use of Digital

Twins (DTs) of equipment or subsystems. DTs can

enhance the system reactivity to uncertain events by

getting data from the field and triggering actions on the

physical asset.

The concept of a DT-based virtual factory is

presented in [12] and its architecture to support

modelling, simulation and evaluation of manufacturing

systems while employing virtual reality (VR)

learning/training scenarios. Verification of developed DT
architecture and integration in the manufacturing system

is implemented in [13] in a virtual environment, thus

supporting VC. In the same context, a DT-based remote

semi-physical commissioning approach for flow-type

smart manufacturing systems is proposed and validated

through a case study of a smartphone assembly line [14].

The interconnection between a physical production

system and its DT is examined [15], focusing on required

sensors and the number of synchronization points to

realize a dedicated control by the digital twin.

Four commercial industrial simulation software

systems supporting VC function are compared in [16] in
the context of constructing the FMS DT with a

commercial master control system for VC.

3. THE FMS STUDIED

The FMS that was studied is shown schematically in

Fig 1. Note that this layout is the intended one, since only

3 processing stations (CNC lathe, CNC mill, robot) are

currently present whilst auxiliary stations (transport,

identification-ID, palletizing, buffers, storage) are in the

implementation stage. There are 24 stations in total,

belonging to 4 groups: common, pallets, parts and tools

highlighted in red, blue, green and brown, respectively

The processing stations employed are: a two-axis

EMCOTM COMPACT 5 CNC lathe, a 3-axis EMCOTM

F1 CNC mill and a 5-axis MitsubishiTM RM501 robot.

These stations have undergone radical upgrading of

motors, electronics and controllers, now employing

LinuxCNCTM [17‒19].

Storage_start (station 13, 6 for parts and pallets

respectively), Storage_finish (station 19, 12 for parts and

pallets respectively) and Tools_storage (stations 1, 2 for

milling and turning, respectively) are hosted in a 15-slot

Automatic Storage and Retrieval System (AS/RS) which

is served by a cartesian robotic mechanism [20].

The mill (station 23) and the lathe (station 24)
possess intermediate buffers for part and pallet storage

before and after processing (stations 14, 15, 7, 8 and 17,

18, 10, 11 respectively). They also possess a tool buffer

each (station 3, 4, respectively).

The robot (station 21) is responsible for loading /

unloading the lathe and mill with parts and pallets. It also

moves parts and pallets between the automatic (vision-

based) identification station (ID – station 22) and an

intermediate buffer for storage of unidentified parts

(station 22) and pallets (station 9). Its reach is not enough

to cover the aforementioned stations thus it seats on a
linearly moving platform.

Manual labour is required for feeding unprocessed

parts, empty pallets, milling tools and turning tools

(stations 13, 6, 1, 2 respectively) into the system or

taking finished parts, full pallets, used milling and tuning

tools away (stations 19, 12, 1, 2 respectively), for

palletizing and de-palletizing parts (station 5), for

loading and unloading milling and turning tools from/to

the tool buffers (stations 3 and 4, respectively).

The movement of parts, pallets and tools between the

AS/RS and the intermediate buffers is undertaken by a
transport system (station 20), which is envisaged to be a

mobile robot.

Aspects of the available equipment of the FMS are

shown in Fig. 2.

Fig. 1. General layout of the FMS studied.

 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724 19

 a b

 c d

Fig. 2. FMS stations: a ‒ mill; b ‒ lathe; c ‒ robot; d ‒ AS/RS.

Note that the capacity of buffers, storage areas,

palletizing station and transport are parametric and thus

user-defined. Buffer capacities are by default equal to 1.

The robot, by default, moves one part or one tool or one

pallet. Generally, movement or transporting priority is

highest for tools, followed by pallets and last by parts,

since (a) no machine can work without tools and (b)

pallets generally contain more than one parts or tools,

promoting productivity.

Six process plans are supported, involving one to

three sequential operations that can be of type turning (T)

or milling (M). Operations in each process plan have

user-defined duration. The process plans are: T, T-M, T-

M-T , M, M-T, M-T-M.

The production plan consists of the process plan and

the number of parts or pallets, the number of turning and

milling tools required.

4. FMS CONTROLLER DEVELOPMENT

The PN corresponding to one of the 6 process plans,

in fact a simple one of the type T-M for reasons of

comprehensibility, is shown in Fig. 3. Different number

and/or sequence of operations, as in the rest 5 process

plans, would necessitate construction of a different PN.

However, the principles of constructing any PN remain

the same. The PN was designed using the open software

Platform Independent Petri Net Editor v4.3.0 [21].

4.1. PN structure

This particular PN consists of 72 Places and 52

Transitions. The Places are grouped following the same
coding (Common, Parts, Pallets and Tools) used in

defining the FMS, compare Fig. 3,a and Fig. 1.

Each one of the groups of Places of the PN is shown

in magnification in Fig. 3,b‒g.

In their overwhelming majority, Places represent

states of the FMS but, in addition, some "fake" Places

have been used as they serve token flows or impose

priorities. Further to normal arcs forming the input to

Transitions, some inhibitor arcs have also been used as

negative conditions of Transition firing. Examples will

be shown in Section 4.2.
Places may represent availability of a resource, e.g.

Robot, Mill, Lathe, Transport, ID_Position+Station in

Fig. 3,d, availability of a buffer slots up to maximum

capacity as denoted by the number of tokens, e.g.

BufferMill_Unit_In (1), Pallet_Storage_Finish (5),

BufferMill_pallet_Out (1) in Figs. 3,b, c and e

respectively).

a

b

20 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724

c

d

e

f

g

Fig. 3. Petri Net developed: a ‒ General view; b‒c ‒ Parts detail; d ‒ Common detail; e‒f ‒ Pallets detail; g ‒ Tools detail.

Places may represent available parts to be processed,

e.g. Unit_storage in Fig. 3,b (max capacity 20 parts in

this case), or available tools, e.g. StorageTool_Mill in

Fig. 3,g (max capacity 5 tools in this case). The number

of tokens is set by the user, typically as an initial

condition of the simulation.

Some Places may have a variable (infinite) capacity,

e.g. Buffer_Wrongpallets, in Fig. 3,e as the number of

pallets that are misidentified is not known beforehand.

Places may represent a "waiting" type activity of

unknown duration, e.g. HoldOn_BufferMill_Unit_In,

HoldOn_BufferLathe_Unit_In, in Fig. 3, and f,

respectively.

Places may represent an activity of known duration,

generally loading and unloading parts, pallets and tools

and processing parts and pallets e.g. Upload_Pallet_Mill,

Mill_Pallet_Process in Fig. 3,e, Download_ToolMill in

Fig. 3,g.

In some cases, auxiliary Places (termed "fake") have

been used to impose priorities, e.g. Fake_place_tool in

Fig. 3,e has been defined with capacity 1 signalling

completion of tool transport so that pallet transport can

take over in connection to inhibitor arcs in Transition
‘Fake’ in Fig. 3,g. Similarly, auxiliary Place

‘palletIDstation_ NO_ok’ in Fig. 3,e has been defined

with capacity 1 to signal that the pallet has been mis-

identified. Thus, by use of an inhibitor arc in the antago-

nist Transitions PalletID_No_OK, PalletID_OK_Free_ID

the pallet (token) is directed to Buffer_Wrongpallets.

As for the Transitions involved in the PN model, in

general these signify start / end events or triggers for

changes of state, i.e. tokens appearing in / disappearing

from the respective Places.

In fact, for each one of the 52 Transitions defined in

the system the set of the firing rules (conditions and
results) has been defined taking into account the input

Places, the output Places, the type of arcs (normal or

 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724 21

inhibitor) and the arc weights. This is the backbone of the

implementation of the PN into a controller program.

4.2. PN simulation

The PN was simulated in the PIPE environment [21].

The initial marking comprises, in addition to default

values for availability of resources, storage and buffers,

of 6 pallets and 8 parts in the 20-slot store, 2 milling

tools and 3 turning tools in the 10-slot respective

storages. The PN is 20-bounded since no place acquires

more than 20 tokens irrespective of the initial state-

marking. This is largely due to the capacity restrictions

imposed in the Places.

In numerous initial and intermediate markings a

number of transitions can fire mostly due to their

independence (concurrency) or in some cases as a result

of conflict. i.e. being fed by the same Place(s). Random

selection of the Transition to fire within that set is

adopted in all such cases. The simulation ends when all

parts and pallets have been processed with the following
overall statistics:

According to PIPE’s mathematical analysis, the PN is

not covered by positive T-Invariants, therefore we do not

know if it is bounded and live. In addition, the PN is not

covered by positive P-Invariants, therefore we do not

know if it is bounded. Minimal siphons are:

palletIDstation_NO_ok and Minimal traps:

Buffer_Wrongpallets. Simulation stopped after 164

transition firings, 10 replications and average number of

tokens was 95%. Two characteristic snapshots of the

token flow are shown in Fig 4.
In particular, Fig. 4,a depicts movement of a pallet

from Pallet_Station to Pallet_Storage by the Transport.

The respective three Places have to contain at least one

token and so does Fake_place_tool, to confirm that all

processes related to tools have been completed.

Figure 4,b depicts firing of the Transition that loads a

pallet from the buffer of the Mill to the Mill itself by

means of the robot. It has to pass first through the

identifications station ID_position+station. Upon firing

of this Transition, the identity of the pallet has to be

checked in order to be allowed processing on the Mill. In
addition, the Mill’s buffer is emptied.

a

b

Fig. 4. Characteristic Transition firings: a ‒ pallet movement to
Pallet_Storage; b ‒ pallet movement to Mill.

5. FMS CONTROLLER PROTOTYPING

Each FMS station has specific inputs - outputs

(signals) and a local controller, which hierarchically

activates further software to perform specialized

functions, such as LinuxCNCTM or other software based

on which each FMS station operates. The central

controller executes a control program resulting from the

conversion of the corresponding PN. In this context it

must communicate with the respective local controllers

of the individual stations through appropriate signals.

It is straightforward to translate each transition of the

PN into a rule containing preconditions for firing and

token transactions upon firing. Thus, the PN is translated

into a control program running on the central μ-

controller. This is executed in the same way as in the

simulator, e.g. PIPE, the main difference being that token

addition to or deduction from a Place that corresponds to
an FMS station (slave) is regarded as a change in the

value of a respective variable in the slave controller.

Similarly, checking for presence or absence of a token in

a place representing an FMS station is equivalent to

reading the value of the respective variable in the FMS

station slave controller concerned.

The control logic follows a loop, until the end of the

functional scenario, consisting of the following steps:

 The master controller asks the slave controllers to

report whether their availability or not. Slaves do so

after confirming with their respective FMS station, or
in the absence of a real or computer-controlled station

with the human user.

 The master controller executes the control program

serially, i.e. it checks for each transition of the Petri

net if all the relevant selection conditions (if

conditions) constituting input branches, are satisfied

and creates a list of possible activations. If there are

conflicts, one transition is randomly selected.

 Once a transition is selected, the commands that

make up its output branches are executed. These

include engagement or release signals of the FMS
stations, which are sent by the master to the slaves,

which act accordingly.

Engagement can mean running a CNC program on

the Lathe, Mill or Robot stations, which lasts for a

specified period of time. The duration of execution of

programs or actions, given that there are no real stations

but only their simplified slave controllers, is determined

by timing commands of the type: delay (duration). In this

way, the controller acquires a 'sense' of time, even

though the concept of time does not exist in the classic

PN, where the controller is based. In the case of storage,

the engagement is implemented by converting a storage
location into a reserved one, that is, by simply changing

the value of the corresponding variable. Similarly, station

release is interpreted and implemented. Generally, two

values denoted as LOW and HIGH are used: LOW

means the station is available (released) or has a token

(as interpreted in PNs) and HIGH means reserved.

5.1. Master-slave scheme

To implement the FMS control prototype in this way,

microcontrollers as opposed to microprocessors or PLCs

are sufficient for the following reasons: simplicity of use

22 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724

and ease of programming, connectivity with peripheral

circuits and with each other, low cost, access to

individual add-on components (shields) and libraries.

5.1.1. Hardware. An ArduinoTM-Mega 2560 Rev3

microcontroller was used as the central controller and

ArduinoTM Uno Rev3 microcontrollers as local

controllers. These do support connectivity and simple

control of many peripheral devices together, which

involves mere switching of output-input signals between

High and Low.

The main features of the ArduinoTM Mega are: an

ATMega328P processor, 14 digital I/O pins, of which 6

can be PWM (Pulse Width Modulation) outputs and the 6

analog I/O pins. In addition, when using the serial

monitor for communication (Serial Monitoring) with the

computer, pins 0 and 1 act as RX (Receiver) and TX

(Transmitter). There are also 2 small leds with the same

name (RX and TX), which light up accordingly for serial

data reception or transmission. Most of the functions of
the ArduinoTMMega are the same as those of the

ArduinoTMUno. Their main differences are: the

microcontroller (ATmega2560), RAM (8 KB), Flash

Memory (256 KB), EEPROM (4 KB), higher number of

I/O ports (54 digital and 16 analog) as well as additional

pins for 5 V output power supply and ground (GND). It

also contains 4 UART serial ports (0-1,14-15,16-17,18-

19) and a 16 MHz crystal oscillator.

Microcontrollers communicate asynchronously with

each other in a multimaster-slave scheme according to

the UART standard. In particular, the I2C protocol
followed is a multi-master, serial, single-ended bus,

referred to as a two-wire interface. It can connect up to

127 nodes at low speed with two lines, namely SCL, the

clock line used for synchronization, and SDA, the data

line. There is, of course, a ground (GND) connection and

there may be a 5V supply line, see Fig.5.

When the master (central) controller wishes to

communicate with a slave (local) controller, it sends an

appropriate sequence of pulses on the SDA and SCL

lines. The data includes the address of the slave (7 bits +

1 bit that determines whether it is send or receive. Via
the analog ports SDA (A4/20) and SCL (A5/21) it is

possible to connect the microcontrollers (ArduinoTMUno

and ArduinoTMMega, respectively).

Indicatively, the implementation using one master

controller – central and two slave controllers

corresponding to the robot and the Mill is presented, see

Fig. 6. Further to the I2C connections through a

breadboard, three light emitting diodes (leds) were used,

namely yellow for the central controller, green for the

Fig. 5. I2C Connectivity.

Fig. 6. Indicative connection of master and slave controllers.

Fig. 7. Indicative master-slave controllers communication flow.

robot and red for the Mill slave together with 220 Ω

protection resistors. They served for visual monitoring of

serial data transmission between master and slaves, as

well as for loop cycle monitoring.

5.1.2. Control program prototypes. The controller

programs were written in Arduino IDE v.1.8.5, the

master controller running the PN-based control logic

whilst the slave controller programs were exactly the

same, consisting of 67 lines each. The programs made

used of the ready-made I2C library, the Wire library, in

particular the following basic commands: begin(address),

requestFrom(address,quantity,stop),

beginTransmission(address), endTransmission(stop),
write(val), available(), read(), setClock(),

onReceive(handler), onRequest(handler). Serial

communication events among the controllers were

printed out by the respective controller initiating or

responding to the particular requests, for purposes of

documentation, see Fig. 7.

5.2. Photodiode-switch pairs as local controllers

As an alternative, the ArduinoΤΜUno local controllers

were replaced by pairs of a switch and a led. The led

provides information on the state (HIGH/LOW =

ON/OFF= token presence/absence) of the FMS station
that the local controller is associated with, whereas the

switch is the means to change that state.

Thus, state changes do not result from a command by

the master controller as in the I2C connection, but

happen interactively. First, visual output is created to

inform the user, using both leds and textual

communication, so that he/she can then manually change

the state of the switch following additional commands

he/she receives.

 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724 23

a

b

Fig. 8. Connection of central controller to led – switch pairs
representing slave controllers: a ‒ schema; b ‒ hardware.

5.2.1. Hardware. The master controller directly reads

an input (from respective Input pins) from its (+5V)
supply. A two-position (On/Off) switch is inserted

between the power supply and the input. The

ArduinoTMMega central controller was combined with 24

switches and 24 LEDs that correspond to the 24 positions

of the PN representing assets (machines, robots, storage,

buffers), see Fig. 8,a.

Note that the leds have different colors according to

the grouping of the PN Places, see Fig. 3,a and Fig. 8,a.

Also, 220 Ω resistors are used to protect each led and 10

KΩ pull-down resistors for the switches, so they do not

‘float’ when open. One large yellow led is on as soon as
the central controller enters the control loop and off at

the end of it.

5.2.2. Controller prototype programming. First, the

following are initialized:

 The switches/stations that make up the inputs and

correspond to specific input Pins of the

microcontroller.

 The variables that read the switches of the FMS

stations. They have the station/input name prefixed

by "switch".

 The leds that make up the outputs and correspond to

specific output Pins. They have the station/input
name prefixed by 'Led'. Each Led is right next to the

corresponding switch, see Fig. 8,b.

Note the following in the logic of the control loop:

 First all inputs/switches are read and registered in the

corresponding switch-variables, through the

digitalRead() command.

Fig. 9. Indicative interaction flow in serial port.

 The following general principle applies to the state of

switches (ON/OFF) and leds (HIGH/LOW): "If the

position has token Token = 1, then Led = LOW and

switch = OFF, regardless of whether the token means

‘available’ or ‘engaged’ or any number of some kind.'

 The result of the activation rules is a command to the
user to change within 15 secs (delay(15000)), the

state of the switch (ON/OFF), based on the state of

led (HIGH/LOW) and a corresponding instruction in

the interaction window.

The corresponding control program consists of 976

lines of code. The following interaction flow is shown as

an example, see Fig. 9 for textual output on the serial

port:

I. Display Led BufferTool_Mill = LOW, Message:

switch50 = OFF (Release).

II. Message: Tool_Mill is loaded into Transport
III. Display LedTool_Mill = HIGH, Message: switch52

= ON, because Token = 0 (Token Allocation = 0

now). So, the switch will remain ON and the Led

will remain HIGH.

IV. Display LedTransport = HIGH, Message: switch24

= ON, because Token = 0 (Commitment).

 The inputs are re-read due to changed state.

V. Message: Tool_Mill is unloaded to BufferTool_Mill

VI. Display Led BufferTool_Mill = HIGH, Message:

switch50 = ON, (Commit) and it stays like this, as

the Mill tool buffer is not released.

VII. Display LedTransport = LOW, Message: switch24
= OFF, because Token = 0 (Release).

6. CONCLUSIONS

Control of an FMS is systematically and reliably

designed and tested based on PN. In οθρ case, classical

simple, non-timed networks were used, but they do not

provide the flexibility required for the introduction of

new process plans. As a result, a different control

program must be run on the central controller for each

product mix. Therefore, to cover all possible product
combinations the corresponding PN should be very large.

Alternatively, individual PNs can be created for

individual product combinations that must be foreseen

from the outset. However, the conversion of such PNs

into a control program is simple and direct. Alternatively,

a more elegant solution that provides flexibility and

small PN size is colored networks. Their transformation

into a control program is possible, but not as direct as in

the case of classical PNs [22].

Given the PN and the corresponding program of the

central microcontroller, a viable solution with its fully

automated communication with the FMS stations is to

connect each station to the central micocontroller through

24 K. Petropoulos, G.-C. Vosniakos and E. Stathatos / Proceedings in Manufacturing Systems, Vol. 19, Iss. 1, 2024 / 1724

a corresponding slave microcontroller. In this context,

exploitation of the I2C communication bus has the

following positive characteristics:

 The central controller is defined directly as master

and the others as slaves, without the need to write

code defining the relationships of these devices.

 The connection to each device is made through 3

cables only (SDA, SCL, GND).

 The speed of information transmission, through the

I2C serial bus, is satisfactory because although

response is not instantaneous, only simple High/Low

signals are transferred.

 The control program executed on the slave

microcontrollers is exactly the same, i.e. standard, if

only switching between two states (on / off) is

required. Otherwise, if further functions are required

that the central controller must know of, which, in the

general case, are different for each station, the

standard program has to be augmented / modified
accordingly. However, it should be noted that in most

cases the central controller is covered by only these

two states, and all the rest possible states of the FMS

station are internal to the local controller.

The alternative implementation that was tried by

replacing the peripheral slave microcontrollers with led-

switch pairs is oriented towards the involvement of the

human factor, essentially as an operator of the assets. The

central controller communicates with human on one hand

and the latter, in turn, communicates with the individual

local controllers of the FMS stations, in a 'human-in-the-

loop' mode. Therefore, such a model makes sense either
if FMS stations are manual, or for testing and debugging

purposes before replacement by an automated FMS

control model.

REFERENCES

[1] A. Florescu, S.A. Barabas, Modeling and simulation of a
flexible manufacturing system—A basic component of

industry 4.0, Applied Sciences, 10, 2020, p. 8300 (20).
[2] M.P. Fanti, B. Maione, G. Piscitelli, B. Turchiano, System

Approach to the Design of Generic Software for Real-Time
Control of Flexible Manufacturing Systems (FMS),

Chapter 1 in: Computer-Aided Design, Engineering, and

Manufacturing, CRC Press, 2019, p. 29.
[3] A.L. Silva, R. Ribeiro, M. Teixeira, Modeling and control

of flexible context-dependent manufacturing systems, Inf
Sci (N Y), 421, 2017, pp. 1–14.

[4] H. Hu, Y. Liu, L. Yuan, Supervisor simplification in

FMSs: Comparative studies and new results using PNs,
IEEE Transactions on Control Systems Technology, 24,

2015, pp. 81–95.
[5] H. Liu, W. Wu, H. Su, Z. Zhang, Design of optimal Petri-

net controlers for a class of flexible manufacturing systems
with key resources, Inf Sci (N Y), 363, 2016, pp. 221–234.

[6] M. Bashir, Z. Li, M. Uzam, A. Al-Ahmari, N. Wu, D. Liu,

T. Qu, A minimal supervisory structure to optimally
enforce liveness on PN models for flexible manufacturing

systems, IEEE Access, 5, 2017, pp. 15731–15749.
[7] M. Bashir, J. Zhou, B.B. Muhammad, Optimal supervisory

control for flexible manufacturing systems model with

Petri Nets: A place-transition control, IEEE Access, 9,
2021, pp. 58566–58578.

[8] N. Striffler, T. Voigt, Concepts and trends of virtual

commissioning–A comprehensive review, J Manuf Syst,

71, 2023, pp. 664–680.

[9] C.E.B. López, Real-time event-based platform for the

development of digital twin applications, The International

Journal of Advanced Manufacturing Technology, 116,

2021, pp. 835–845.

[10] C. Scheifele, A. Verl, O. Riedel, Real-time co-simulation

for the virtual commissioning of production systems,

Procedia CIRP, 79, 2019, pp. 397–402.

[11] M. Hincapié, A. Valdez, D. Güemes-Castorena, M.

Ramirez, Use of laboratory scenarios as a strategy to

develop smart factories for Industry 4.0, International

Journal on Interactive Design and Manufacturing

(IJIDeM), 14, 2020, pp. 1285–1304.

[12] E. Yildiz, C. Møller, A. Bilberg, Virtual factory: digital

twin based integrated factory simulations, Procedia CIRP,

93, 2020, pp. 216–221.

[13] G. Barbieri, A. Bertuzzi, A. Capriotti, L. Ragazzini, D.

Gutierrez, E. Negri, L. Fumagalli, A virtual commissioning

based methodology to integrate digital twins into

manufacturing systems, Production Engineering, 15, 2021,

pp. 397–412.

[14] J. Leng, M. Zhou, Y. Xiao, H. Zhang, Q. Liu, W. Shen, Q.

Su, L. Li, Digital twins-based remote semi-physical

commissioning of flow-type smart manufacturing systems,

J Clean Prod, 306, 2021, p. 127278 (15).

[15] A. Ait-Alla, M. Kreutz, D. Rippel, M. Lütjen, M. Freitag,

Simulation-based analysis of the interaction of a physical

and a digital twin in a cyber-physical production system,

IFAC-PapersOnLine, 52, 2019, pp 1331–1336.

[16] W. Sun, J. Wu, G. Xiao, Z. Jin, Research on selection of

commercial industrial simulation software oriented to

virtual commissioning, in: J Phys Conf Ser, 2021, p. 12052

(6).

[17] G.-C. Vosniakos, N. Zourtsanos, N. Kontogiannis,

Appreciation of CNC Technology Through Machine Tool

Upgrading by an Open Controller, in: Manufacturing

Engineering Education, Elsevier, 2019, pp. 105–130.

[18] A. Tzanis, Control of a machining center based on

LinuxCNC, Dissertation, Interdepartmental Postgraduate

Course: Automation Systems, National Technical

University of Athens, 2019, p.111. doi:

10.26240/heal.ntua.17629.

[19] D. Tsoumpas, Control of an industrial robot based on

open CNC software, Final Year Dissertation, National

Technical University of Athens, 2015, p.157, doi:

10.26240/heal.ntua.10091.

[20] E. Vavylousakis, Design and control of a smart automatic

storage and retrieval system serving a flexible

manufacturing system, Final Year Dissertation, National

Technical University of Athens, 2022, p.156. doi:

10.26240/heal.ntua.24528.

[21] S. Tattersall, Platform Independent Petri Net Editor,

https://sarahtattersall.github.io/PIPE/index.html (accessed

August 15, 2024).

[22] A. Papazoglou, Modelling of a flexible manufacturing cell

by coloured petri nets and conversion to PLC program,

Dissertation, Interdepartmental Postgraduate Course:

Automation Systems, National Technical University of

Athens, 2017, p.158. doi: 10.26240/heal.ntua.5884.

