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A  PARAMETRIC  MODEL  OF  THE  INVERSE  DYNAMICS
FOR  THE  3-PUU  CLASS  OF  PURE  TRANSLATIONAL

PARALLEL  MANIPULATORS

Marco PRINCIPI

Abstract: This paper introduces a parametric formulation of the inverse dynamics problem for the pure
translational 3-PUU parallel architecture, aimed to provide a forecast of the solicitations on the me-
chanic structure and a survey over its stiffness capability to be implemented into an optimization study.
The elaborated algorithms were collected in a MATLAB® toolbox and verified by mean of the CAE mul-
tibody analysis software MSC visualNastran®.
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1. INTRODUCTION

This paper introduces a parametric formulation of the
inverse dynamics and stiffness analysis for the pure
translational 3-PUU parallel architecture, developed as a
MATLAB® procedure with the aim of providing a tool
for the simultaneous optimization of both the aspects of
such architecture.

The correspondence of this model was positively
verified by mean of the multibody analysis software
MSC VisualNastran.

A 3-PUU parallel robot (Fig. 1) has three identical
and symmetric branches: each of them is made up of a
slider that is connected to the frame by a synchronous
linear motor that is modeled as an actuated prismatic
joint, and a leg that is connected to the slider and to the
mobile platform respectively by the upper and the lower
universal joints. Under the condition that the two couples
of vectors representing the rotational degrees of freedom
left by the lower and the upper universal joint of the
same leg coincide and are independent from those of the
other two legs, this mechanism allows only the pure
translational motion of the tool platform [5].

Fig. 1. A 3-PUU robotic platform.

2. THE  KINEMATIC  MODEL

The geometric parameters that can be manipulated in the
multi-object optimization process are the radii of the
platform’s fixed and mobile platform, the length of the
struts and the slope φ of the linear drives on the fixed
platform, that coincide with the edges of a tetrahedron,
whose vertex shifts towards the infinity as long as the
fixed columns are close to verticality or falls on the same
plane containing the linear drives, if they are arranged in
a horizontal layout (see Fig. 2). Both the limit values of
the slope call for specific solving algorithms of the posi-
tion problem; on the other hand the differential and dy-
namic analysis algorithm fits all arrangements.

Referring to Fig. 3, we identify:
• a, b, c are placed at the center of the lower universal

joints. They are inscribed in a circle with radius r;
• P is the projection of the TCP upon such triangle;
• The directions along which the centers of the upper

universal joints A, B, C move are ˆ ,A  ˆ ,B  ˆ .C  They
intersect the upper base of the fixed frame on A1, B1,
C1, that are inscribed in a circle whose radius is R.
Similarly, A0, B0, C0, are the intersections with the
plane that instantaneously contains points a, b, and c;

• The unit vectors ˆ,a  ˆ ,b  ĉ  describe the orientations of
the mobile legs. Their length is L;

• α, β, γ are the angles between the projections of the
fixed columns and corresponding legs upon the plane
through a, b, and c;

Fig. 2. Fixed frames with different slopes of the linear drives.
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Fig. 3. The parametric kinematic model of a 3-PUU
platform.

2.1. Inverse position analysis

The position of the mobile platform is identified by three
independent kinematical chains, made up by the poly-
gons PVAa, PVBb and PVCc. In a further detail the
distances between points A, B, C and A1, B1, C1, meas-
ured by the independent coordinates q1, q2, q3 are:
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The relations between angles φ1, φ2, φ3 and α, β, γ are:
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2.2. Singular arrangements of the fixed frame

The equations (1) fail to describe the architectures with
vertical or horizontal prismatic pairs. In the first case the
problem is solved by replacing |VV0|, that rises infinitely,
with |OV0|; in the latter, where φ = 0, the vertex of the
mobile platform lays on three circles with the centers in
A, B and C and radius L0, that is to say the projection of
the struts over the plane containing the fixed platform.
The correctness of this assumption was verified by
checking the convergence of its results with those one of
a quasi-horizontal, but not singular, layout.

2.3. Forward velocity analysis

First of all, we want to express the angular velocities of
the legs in terms of the linear velocities 1,q  2 ,q  3q  of
the actuated prismatic joints A, B, C along their respec-
tive motion directions ˆ ,A  ˆ ,B  ˆ .C

Due to the pure-translational motion of the mobile
platform, the centers of the three lower universal joints
have the same velocity:
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That are the linear system of six equations in nine
unknown Cartesian components of the angular velocities
of legs. The three missing equations come from the mu-
tual arrangements of the universal joints on each leg, that
prevent any rotation around their common axes.
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Out of any singular configuration, the matrix multi-
plying the set of the legs’ angular velocities can be in-
verted. Then the direct velocity problem is solved simply
by expressing the velocity of the mobile platform, that
with some algebraic manipulation let us write the Jaco-
bian matrix of the 3-PUU:
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2.4. Inverse velocity analysis

The inversion of (5) relates the velocity of the mobile
platform to the corresponding motions of the actuators:
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2.5. Acceleration analysis

Similarly to the velocity problem, a two-step algorithm is
required. Firstly, we derive the linear system (4) and solve
it to find the unknown angular accelerations of legs.
With this information we obtain the acceleration of the
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Fig. 4. A strut and its principal inertial axes.

mobile platform and write the omeomorphism repre-
sented by J  in equation (7).

( ) ( , ).J J= +P q q q q (7)

3. THE  DYNAMIC  MODEL

The Eulero-Newton approach is used for describing the
inverse dynamic model of the generic 3-PUU class ro-
botic platform in order to provide a tool useful either for
the mechanical design both or control purposes.

This intention justifies the rather bulky approach to
the kinematical analysis, that nevertheless delivers with a
little effort the linear and angular differential terms for
the three legs, thought as spread-mass bodies: by this
way it is possible to quantify the static and dynamic
loads that they undergo and forecast their stress status.

3.1. Balance of forces and torques acting on a leg

The fixed frame bears the orthogonal components of the
upper universal joints’ reactions FA, FB and FC to the
prismatic pairs, while the set of t spread by linear motors
balances the components acting along their directions.
Furthermore the gravitational and inertial effects on the
slides have to be considered:

3

3

3

ˆ

ˆ ,
ˆ

A A

S B B

C C

R
m R

R

⎛ ⎞⋅ ⋅⎜ ⎟
⎜ ⎟= ⋅ − ⋅ − ⋅
⎜ ⎟

⋅⎜ ⎟⋅⎝ ⎠

A g F
q B g F

FC g

t (8)

where the matrices RA, RB, RC, whose columns are the

Cartesian components of ˆ ,A  ˆ ,B  ˆ ,C  rotate the world
reference system to a local frame with the z-axis laying
along the sliding directions. The reactions on upper uni-
versal joints are made up of a component aligned with
the linked strut and a normal one. If one considers leg
“A” they are respectively FaxA and FnA. The second one
appears in the balance of momenta around the pole a [6]:
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The attention has to be paid on the expression of
OXYZIA, that comes from ZGxyzIA, the diagonal inertia ten-
sor in the principal inertial local reference system Gxyz
(Fig. 4) with the simple relation:
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The Fna component on the lower universal joint bal-
ances those forces that are normal to the leg:

ˆ ˆ[( ) ( ) ],na nA L A Am+ = − − − ⋅ ⋅F F G g G g a a  (11)

The axial components FaxA and Faxa on the upper and
lower universal joints balance the components of the
inertial and gravitational forces aligned with the strut;

ˆ( ) .axA axa L Am= + − ⋅F F G g a   (12)

Jp is similar to the Jacobian in (5), and by its trasposal
the total force Ftot on the end-effector is decomposed
along directions ˆ,a  ˆ ,b  ˆ.c  Ftot sums the applied load to
the gravitational and inertial effects on the mobile plat-
form and the components of constraint forces exerted by
the lower Hooke’s joints that are normal to the legs. As a
matter of facts the axial components of forces on struts
have the following expression:
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The equations (9, 11, 12) and (13) are useful for
analyzing the stresses and deformations on components.
Nevertheless some laborious algebraic manipulations are
needed for putting them in a well known and handily
fashion, that is common in the control practice:

( ) ( , ) ( ).M N G= + +q q q q qt (13)

4. VERIFICATION  OF  THE  MODEL

The CAE simulation with the multibody software MSC
visualNastran® 4D has been used to check the correct-
ness of both the kinematical and dynamic models. In the
first case, several laws of motion in the Cartesian space
were assigned to the mobile platform and the measured
displacement of the sliders was compared to the corre-
sponding ones calculated with Matlab (Fig. 5).

The obtained displacement values were subsequently
exported to a properly formatted text files, and used as
inputs to drive the elongation of the telescopic rods by
which visualNastran represents the linear actuators.

Table 1
Geometrical features of the modelled robot

Radius of the fixed platform 0.5 m
Radius of the mobile platform 0.12 m
Length of the struts 0.85 m
Slope of the branches of the fixed frame 60°

Fig. 5. Comparison between model and CAE model.
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By this way in a yet kinematical simulation, the soft-
ware allow to record the tensile stresses on the drives and
compare them with the results of the dynamic model.

Being all parameters involved in the analytic investi-
gation re-configurable, the verification of a certain ar-
chitecture ensures that robot with any set of geometrical
and inertial values are described properly.

5. STIFFNESS  ANALYSIS

The two main factors for the mechanism’s compliance,
namely the deformations of the struts in response of axial
solicitations and the finite stiffness of the actuation de-
vices were thought as uncoupled and thus modeled as the
serial arrangement of two linear springs. The bending of
the legs was indeed neglected.

The search for the quasi-isotropic stiffness condition
lead to adopt as a condition number the ratio between the
maximum and minimum eigenvalue of the product of the
Jacobian matrix by its trasposal, that’s to say the ratio
between the semi-axes of the resistance ellipsoid. A typical
limit value of this ratio is 5 [3].
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The physical meaning of this index is related to the
ratio between the forces along the directions of maxi-
mum and minimum stiffness capable to provoke a tool
platform’s threshold deflection δ. By this reason it is
interesting to map throughout the workspace the values
of minimum forces associated to a certain δ (See Fig. 6).
Such values are obtained as the solution of the Lagrange’s
multiplier:
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In this case K includes both the stiffness of linear

actuators (kq ≈ 25 N/μm) and the stiffness of legs, whose
cross section’s area is A, by mean of the matrix Jp:
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The overall characterization of the operative space of
3-PUU robotic platforms with high and low slope of the
fixed side columns in terms of isotropy and stiffness is
resumed in the Table 2. There is substantial agreement
with the existing literature [3, 4].

Fig. 6. An example of stiffness map (φ = 72°, |OV0| = 0.9 m).

Table 2

Overall influence of the slope of the fixed columns

Low sloped guides High sloped guides
Shape of
workspac

Wide, singularities reduce
performance when the tool
is close to fixed platform.
Poor vertical extent

Narrow bur very tall: It
consist of two parts
divided by an highly
singular region.

Isotropy Scarce when tool is close to
fixed platform, good else-
where

High, but suffering from
parallel singularities

Mean
stiffness

Mechanical gain raises
heavily with distance from
fixed platform

Mechanical gain raises
quite with distance from
fixed platform

Notes Optimal in quasi planar
applications

Fixed frame may inter-
fere

6. CONCLUSIONS

A parametric mathematical model of the 3-PUU PKM,
that seems to be much promising for high speed and
precise working has been presented. The dynamic in-
verse problem was solved with the Newton-Eulero ap-
proach, with the aim of providing a valuable tool for the
structural design. The output generated by it agreed with
the data collected on a CAE model very well. The stiff-
ness of that class of parallel robots was investigates by
mean of the mapping of two conditions numbers
throughout the workspace. In a further development a
multi-variable optimization study relying on both these
algorithms will be propaedeutic to the construction of a
physical prototype.
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