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QUASI-DYNAMIC  EFFECTS  IN  BALL  BEARINGS  WITH  2,  3  OR  4
CONTACT  POINTS

Daniel REZMIRES, Cezar RACOCEA

Abstract: The paper presents a unitary model that is proposed to describe the quasi-dynamic behavior of
ball bearings either with 2, 3 or 4 contact points (4PCBB). The model has five degrees of freedom and
allows to: (i) predict the internal load distribution and calculating the rigidity matrix; (ii) determine the
ball and cage kinematics by the principle of power minimization; and (iii) describe the interactions be-
tween various rolling bearing elements in terms of normal and tangential loading, and lubricant film
thickness.
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1. INTRODUCTION

Hamrock, 1973, [4] presented a mathematical model for
ball bearings with arched outer race that corresponds to
the case of 3 contact points bearings.

Also, most of the existing ball bearing analysis used
the assumption that balls roll with spin on one raceway
only [5]. In spite of this, recent experimental studies on
high-speed lubricated ball bearings have revealed that the
power loss by ball spinning is well shared between the
inner and the outer race [9, 11].

In many cases the bearing raceways geometry and the
load distribution generate the Non-Hertzian contacts
responsible for the bearing premature failure.

The bearing elements kinematics has been solved consid-
ering a mixed control of balls between bearing’s raceways.

The cage-balls interactions, as well as the cage-ring
interactions, (the short bearing effect), have been consid-
ered to obtain angular rotational speed of the cage.

The traction forces involved in the dynamic equilib-
rium have been obtained using a Non-Newtonian rheo-
logical, model when the asperity effects have also been
considered.

2. QUASI-DYNAMIC  ANALYSIS

Quasi-dynamic analysis is needed to attain more accurate
values for the kinematics parameters and further, to
evaluate the power losses in the 4PCBB structure.

In this purpose the lubricant characteristics at the
working temperature and the quasi-static parameters of
the structure have to be known.

2.1. Lubricant viscosity and piezoviscosity factor

The WLF mathematical model, modified according to
Yasotomi [12], is used to evaluate the lubricant dynamic
viscosity. In the WLF model the dynamic viscosity, de-
noted WLF(T, p) depends on temperature and pressure.

2.2. Isothermal lubricant film thicknesses

Hamrock and Dowson formulae [3] for isothermal steady
state full flooded conditions and elliptical point contact

geometry are applied for the contact (j, idx) to obtain the
film thicknesses hmin(idx, j) and hcen(idx, j).

The thermal reduction factor Φt and the mathematical
formulae are presented by Olaru in [9].

2.3. The lubricant shear stress

The model proposed by Houpert [6] has been used to
evaluate the lubricant shear stress in the point P(x, y) of
contact area (j, idx). The mathematical model is shown
also by Olaru in [10] and is used to use for evaluation of
the tangential traction forces.

2.4. Angular rotational speeds

The quasi-dynamic equilibrium developed for 4PCBB
structures establishes the angular rotational speeds for
balls and cage considering both, the normal and the tan-
gential forces which act between bearing’s elements. The
ball and cage kinematics are functions of ball angle ac-
cording to [14–16].

2.5. Ball’s equilibrium equations
The normal and tangential forces accounted for ball’s equi-
librium equations are schematically presented in Fig. 1,
where: FH is the hydrodynamic force, FR is the rolling
force, FL is the viscous friction force on the rolling di-
rection, FA is the friction force due to the asperity trac-
tions, FAL is the air-lubricant resistant forces.

Fig. 1. Forces accounted for ball’s quasi-dynamic equilibrium.
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The general form of ball’s quay-dynamic equilibrium
equation is:

M(ωb,j, ωc) = 0, (1)

, , ,( , ) ,b j c cRC l rF Fω ω =∑ (2)

where: indices l and r indicate the contact in the left part
or right part of the ball respectively, Fig. 1; FcRC is the
contact load between ball j and cage; the FCBC(j) vector
contains all FcRC contact forces between balls and cage.

The sense of the ball-cage contact force FCBC(j) is
presented in Fig. 2.

Considering the previously mentioned forces the
ball’s equilibrium equations become:
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with:
SFI = FA, idx + FL, idx − FR, idx    (idx = 1, 2), (5)

SFe = FA, idx + FL, idx − Fr, idx    (idx = 3, 4). (6)

2.6. Contact forces between cage and rings. Short
bearing effect

The frequent case of the cage guided on the inner race-
way(s) is presented in Fig. 3 [15]. For this situation the
global effect of FCBC(j) forces is a contact force denoted
FcCR:
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Fig. 2. The sense for ball-cage contact force.

Fig. 3. Cage-inner ring sliding contact.
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and ψ + Δψ [rad], being the angular position of the ball.
The contact between cage and one of bearing’s rings

is assumed as a short journal bearing, with main geomet-
rical parameters [11, 15] presented in Fig. 4.

In this assumption the Sommerfeld number, denoted
So, governs all the computation [7]:
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where: D is the diameter of the surface cage in contact
with the ring (Dmin cage or Dmax cage, for inner or outer ring
contact, respectively); Dr is the diameter of the ring sur-
face in contact with the cage (Deiav or Deeav).

The necessary link between the Sommerfield number
so and the relative eccentricity ε is adopted as that pre-
sented by Frene [7] and Olaru [10]:
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The values of the friction coefficient result as:
2 (2 )

.
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(13)

The functions cCRF μ  represent an active force for the
inner guiding case and a resistant force for the outer
guiding case.

The torque equilibrium equation applied to cage pro-
vides the values of angular rotational speeds ωc and ωb, j.
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Fig. 4. Cross-section bearing geometry.
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3. APPLICATIONS

The presented mathematical model is applied to the
4PCBB-1234 and 4PCBB-13 bearing types, both of them
having the cages guided on the inner rings. The main geo-
metrical parameters are presented in Table 1. The lubricant
is OIL Mobil Jet II, and the lubricant debit is Qh = 3 l/h.

In the followings, three analyses, (A1, A2) are pre-
sented, in all cases the inlet contact temperature is
T = 120°C.

3.1. Effect of inner ring rotational speed on some
of quasi-static and quasi-dynamic parameters
of a 4PCBB-1234 structure

The case of 4PCBB-1234 bearing subjected to a pure
axial external load, Fax = 10 000 N and the ball j = 0 is
considered (Fig. 5–10).

3.2. Sliding speeds and film thickness as function
of axial force

Both the internal geometry of the considered 4PCBB-13
structure, (deep groove ball bearing), and the operating

Table 1
The bearings geometry

Parameter 4PCBB-13 4PCBB-1234
Number of balls, Z 16.000 20.000
Ball diameter, dw [mm] 7.938 19.050
Pitch diameter, dm, [mm] 50.000 149.000
Radial clearance, [μm] 79.000 150.000
Inner rings curvature factor, fi 0.525 0.525
Outer rings curvature factor, fe 0.510 0.510
Inner rings shim angle, [deg] – 20.000
Outer rings shim angle, [deg] – 30.000
Ball roughness, [μm] 0.150 0.150
Raceways roughness, [μm] 0.050 0.050

Fig. 5. The dependence of cage to inner ring angular
speeds ratio on inner ring angular speed.

Fig. 6. The load distribution on ball j as function
of the inner ring rotational speed.

Fig. 7. The dependences of contact angles values
on inner ring rotational speed.

Fig. 8. The dependence of the angle that defines the
direction of ball’s angular speed vector on inner ring

rotational speed.

Fig. 9. The dependences of rolling speeds on inner ring
rotational speed.

Fig. 10. The dependence of the minimum film
thicknesses on inner ring rotational speed.

conditions, (Fr = 0, ωi = 60 000 rot/min) are similar to
those used in [8]. The results provided by the presented
model are presented in Figs. 11–13, being comparable
with the results given in [8].

In addition, the model includes an analysis of the
contact ellipse truncation when occurring. A complex
kinematics and distribution of power losses has been
found when the bearing operates with 3 or 4 contact points
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Fig. 11. The dependence of angular speeds ratio, cage
to inner ring on axial load.

Fig. 12. The dependence of minimum film thickness
on axial load.

Fig. 13. The dependence of sliding speeds on axial force.

points, themselves depending on the composite surface
roughness and lubricant rheological properties.

4. CONCLUSIONS

A unitary mathematical model, in five degrees of free-
dom, to describe the quasi-static and quasi-dynamic
behavior of lubricated ball bearings, either with 2, 3 or 4
contact points, is presented.

The contribution of various interactions within bear-
ing elements, in terms of normal and tangential loading

and the principle of power minimization has been used to
predict the ball and cage kinematics.
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