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ON  THE  OPTIMIZATION  OF  DEEP-DRAWING  PROCESS

Crina AXINTE

Abstract: The aim of this paper is to present a method which allows optimizing the tool geometry and the
process parameters such that the resulted parts satisfy the accuracy demands. The analysis is performed
in the case of cylindrical drawn parts and it is based on the Taguchi’s method coupled to the finite
element method.
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1. INTRODUCTION

The final shape and dimensions of the formed parts are
strongly affected by the springback phenomenon. In its
turn, springback is a function of three main categories of
factors, such as material properties, process parameters
and tools geometry. Hence, by controlling all these
factors, one should control the springback amount in
order to obtain the desired accuracy of the formed parts.
For this purpose, good results could be obtained from
the application of some methods and techniques of
optimization.

In this paper an optimization procedure based on the
LMecA method is presented, in the case of cylindrical
deep-drawing process. As result of the optimization
procedure, virtual corrected tools are created, whose
utilization, coupled with optimized process parameters,
leads to a much lower springback, being thus fulfilled
the conditions needed for proper manufacturing of the
drawparts.

2. APPLICATION  OF  THE  LMECA  METHOD

The LMecA method was elaborated by a research team
from University of Savoie, France, in order to compen-
sate the springback of a V-bending part. The method is
based on the Taguchi’s method and assumes the follow-
ing six stages:
1. Definition of the parameters that characterize the

geometric deviations of the part.
2. Selection of the process parameter which can influ-

ence the geometry of the part, and their range of
variation to test.

3. Choice of a linear or quadratic polynomial model and
construction of an experiment design.

4. Performing the simulations defined by the experiment
design and measurement of the geometrical defects
on the obtained virtual parts.

5. Calculation of coefficients of the polynomial models
and verification of the models.

6. Optimization of the process parameters in order to
obtain the desired geometric parameters of the drawn
parts.

a                                                b

Fig. 1. Geometric parameters of the cylindrical part:
a – theoretical profile; b – analyzed geometric parameters.

2.1. Choice of the geometric parameters of part

The nominal geometry of the part and the geometric
parameters whose variation will be investigated in order
to quantify the effects of springback are presented in
Fig. 1, where: rd is the radius of connection between the
part flange and part sidewall, rp is the radius of connec-
tion between the part bottom and part sidewall, α is the
angle of the flange, β is the inclination angle of part
sidewall and h is the height of the part sidewall.

2.2. Choice of the process parameters

The initial configuration of tool is presented in Fig. 2.a.
The used blankholder force was equal to 45 kN and the
punch-die clearance was set to 1mm. The part resulted by
using this configuration is presented in Fig. 2.b. Because
the obtained values of geometrical parameters of the
drawn part are different from the nominal ones, it fol-
lows to identify the process parameters that must be
optimized in order to diminish the effect of springback.

 
                       a.          b.

Fig. 2. Geometry of tool and part: a – initial tool
configuration; b – resulted part.



372

Fig. 3. Process parameters: Rp – punch radius; Rd – die
radius; s – punch stroke; j – punch-die clearance;

F – blankholder force.

Table 1

Tested process parameters and their fields of variation

Parameter Initial
value

Minimum
value (–1)

Maximum
value (+1)

Punch radius (Rp) 6 mm 5 mm 7 mm
Die radius (Rd) 4 mm 3 mm 5 mm
Blankholder force (F) 45 kN 40 kN 90 kN
Punch-die clearance (j) 1 mm 1 mm 1.5 mm
Punch stroke (s) 30 mm 30 mm 32 mm

These parameters and their fields of variation, chosen
according to the initial simulation results and based on
their probable influence on the part geometry, are pre-
sented in Fig. 3 and Table 1, respectively.

2.3. Choice of the model and construction
of the experiments design

Two type of mathematical model are possible to link part
parameters and process parameters:
• a polynomial model of the first degree, which sup-

poses that the output Y varies linearly with each factor:
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• a polynomial model of the second degree, which
supposes that the output Y varies quadratically with
each factor:
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In each of the two models, Y represents the followed
values (rd, rp, α, β, h), x1 … xn represent the values of the
input parameters that must be optimized (Rp, Rd, F, j, s)
and xixj represent the interactions between the considered
factors.

2.3.1. Linear optimization
Linear optimization assumes to identify a linear depend-
ence between the part and process parameters. In order to
determine the coefficients a0, a1, a2 … an corresponding
to each function, for the five analyzed factors, sixteen
numerical experiments were needed to carry out as it is
shown in Table 2. The result of each simulation was a
file of nodes, representing the nodes of the virtual part
mesh, after the tools removing. These files were post
treated in order to measure the geometric part parame-
ters. The results are given in Table 3.

Table 2

Factorial design for the linear dependence

No Rp¢ Rd¢ F ¢ j ¢ s¢
1 –1 –1 –1 –1 –1
2 –1 –1 –1 +1 +1
3 –1 –1 +1 –1 +1
4 –1 –1 +1 +1 –1
5 –1 +1 –1 –1 +1
6 –1 +1 –1 +1 –1
7 –1 +1 +1 –1 –1
8 –1 +1 +1 +1 +1
9 +1 –1 –1 –1 +1

10 +1 –1 –1 +1 –1
11 +1 –1 +1 –1 –1
12 +1 –1 +1 +1 +1
13 +1 +1 –1 –1 –1
14 +1 +1 –1 +1 +1
15 +1 +1 +1 –1 +1
16 +1 +1 +1 +1 –1

Table 3
Resulted parameters of part

No rp rd a b h
1 5.613 3.673 0.928 0.252 20.654
2 5.648 3.388 0.742 1.192 22.922
3 5.608 3.388 0.742 1.192 22.964
4 5.589 3.525 0.938 1.565 20.619
5 5.548 5.399 0.618 0.261 20.926
6 5.738 5.436 0.523 1.342 18.750
7 5.589 5.456 0.185 0.368 18.923
8 5.662 5.396 0.627 1.304 20.849
9 7.503 3.494 1.031 0.158 20.912

10 7.499 3.385 0.909 1.443 18.944
11 7.558 3.350 0.909 1.443 18.984
12 7.594 3.396 0.728 1.424 20.947
13 7.443 5.437 0.476 0.348 16.978
14 7.525 5.437 0.306 1.382 18.910
15 7.485 5.494 0.313 0.348 18.971
16 7.560 5.524 0.444 1.784 16.833

From the results of the experiment design, the coeffi-
cients of polynomial model of each output were calcu-
lated. The following equations were got:
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Table 4
Comparison of the results

Rp¢ Rd¢ F ¢ j ¢ s ¢
Values

obtained from
relations (1÷5)

Values
obtained

from
simulation

Errors

rp 0 0 0 0 0 6.472 6.416 0.056
rd 0 0 0 0 0 4.448 4.462 –0.014
a 0 0 0 0 0 0.651 0.535 0.116
b 0 0 0 0 0 0.687 0.539 0.148
h 0 0 0 0 0 19.880 19.625 0.255

19.880 0.946 0.988 0.006 0.034
1.045 0.024 0.01 0.007
0.04 0.001 0.02 0.02
0.04 0.002 0.015
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′ ′ ′ ′ ′ ′− + +

(7)

In order to test the assumption of the output’s linearity,
a numerical simulation was carried out at the centre of
the variation field (Rp = 6 mm, Rd = 4 mm, F = 65 kN,
j = 1.25 mm and s = 31 mm). The results of the simulation
were compared with those obtained using the relations
(1÷5) and are presented in Table 4.

By analyzing the above presented results some dif-
ferences could be observed between the two modalities
of determination. Hence, the precision of the model
could be improved by choosing a quadratic model.

2.3.2. Quadratic optimization
In order to determine the coefficients of the quadratic
model a number of 10 additional simulations were
needed (Table 5). The results of simulations are given in
Table 6.

Table 5
Factorial design for the linear dependence

No Rp¢ Rd¢ F ¢ j ¢ s ¢
1 –1.719 0 0 0 0
2 +1.719 0 0 0 0
3 0 –1.719 0 0 0
4 0 +1.719 0 0 0
5 0 0 –1.719 0 0
6 0 0 +1.719 0 0
7 0 0 0 –1.719 0
8 0 0 0 +1.719 0
9 0 0 0 0 –1.719

10 0 0 0 0 +1.719

Table 6
Resulted parameters of part

No rp rd a b h
1 4.793 4.307 0.801 0.831 21.799
2 8.402 4.457 0.709 1.378 18.017
3 6.535 3.310 0.647 0.949 21.082
4 6.627 6.176 0.088 1.116 18.151
5 6.545 4.355 0.580 0.107 20.049
6 6.661 4.446 0.580 0.818 19.808
7 6.528 4.340 0.406 1.197 18.336
8 6.696 4.439 0.528 1.971 19.808
9 6.626 4.450 0.612 0.859 21.606

10 6.701 4.439 0.528 1.844 19.803

The first sixteen experiments coupled with these ten
new experiments allowed to calculate the coefficients of
the quadratic model:
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19.899 0.987 0.951 0.014 0.091
0.621 0.024 0.007 0.007
0.04 0.001 0.02 0.02
0.04 0.002 0.015 0.016
0.08 0.023 0.267 0.28

p d

p d p p

p d d d

p

d

h R R F j
s R R R F R j

R s R F R j R s
F j F s j s R
R F j

′ ′ ′ ′= − − − + +
′ ′ ′ ′ ′ ′ ′+ − − + −
′ ′ ′ ′ ′ ′ ′ ′− − − − −

′ ′ ′ ′ ′ ′ ′− + + + −

′ ′ ′− + − + 25s′

(12)

In order to test the above presented relations a simu-
lation was carried out at the centre of the variation field
(Rp = 6 mm, Rd = 4 mm, F = 65 kN, j = 1.25 mm and
s = 31 mm). The results of the simulation were compared
with those obtained using the relations (6÷10) and are
presented in Table 7.

Table 7

Comparison of the results

Rp¢ Rd¢ F ¢ j ¢ s ¢ Values
obtained from

relations
(6÷10)

Values
obtained

from
simulation

Errors

rp 0 0 0 0 0 6.378 6.416 –0.038
rd 0 0 0 0 0 4.417 4.462 –0.045
a 0 0 0 0 0 0.501 0.535 –0.034
b 0 0 0 0 0 0.593 0.539 0.054
h 0 0 0 0 0 19.899 19.625 0.274

From the comparative analysis, a diminution of the
differences between the values obtained from the two
modalities of determination could be observed; in conse-
quence, the quadratic model will be used to determine
the optimum values of process parameters which allow to
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obtain the best values for the geometrical parameters of
part (as close as possible to the target values).

2.4. Optimization of the tool geometry and process
parameters

The principle consists in minimizing a function equal to
the squared sum of deviation between the theoretical and
the desired output:
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This function has several local minima. The Excel
solver was used to seek them. In the field of study,
defined by the value (–1) and the value (+1) of the process
parameters, none of these minima is equal to zero. In
other words, it is not possible to obtain the five wished
values for the part parameters simultaneously. The lowest
minimum on this field is given in Table 8.

In order to validate the optimization algorithm a new
simulation was performed, using as input data the above
optimized process parameters and tool geometry. The
results of quadratic optimization, of finite element simu-
lation and the nominal values of the geometrical
parameters of part are compared in Table 9.

A good concordance between the estimated values by
minimizing the function Φ and that obtained from simu-
lation could be observed. Also, the accuracy of part ob-
tained by using the optimized process parameters/tool
geometry is much improved compared to that obtained
by using the initial process parameters/tool configuration.

The corrected geometry of tool and the drawn part
resulted by using this geometry are presented in Fig. 4
and Fig. 5, respectively.

Fig. 4. Optimized tool geometry/process parameters.

Fig. 5. Resulted geometry of the part.

3.  CONCLUSIONS

In order to diminish the effect of springback on the part
geometrical accuracy, an optimization procedure based
on the LMecA method coupled with the finite element
method was presented. The proposed method allows
optimizing the tools geometry and process parameters in
order to compensate the elastic deflections of the part.

Good results were obtained by using the quadratic
model. As result of the performed optimization, the de-
viations of geometrical parameters of the part reported to
the nominal profile decreased as follows: with 78.5% for
the radius of connection between the part bottom and
part sidewall rp, with 88.3% for the radius of connection
between the part flange and part sidewall rd, with 94.8%
for the height of the part sidewall h, with 54.2% for the
flange angle α and with 51.7% for the sidewall inclina-
tion angle β.

As a consequence, the presented method could be
successfully used to control the springback phenomenon
in the case of cylindrical drawn parts.
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Table 8

Optimum values of the tool geometry/ process parameters

Rp [mm] Rd  [mm] F [kN] j [mm] s [mm] rp [mm] rd [mm] a [°] b [°] h [mm]
Values resulted from optimization 5.56 3.62 48 1 31.90 6.122 3.988 0.328 0.411 19.936

Table 9

Comparative analysis of the results

Rp [mm] Rd [mm] F [kN] j [mm] s [mm] rp [mm] rd [mm] a [°] b [°] h [mm]
Values resulted by using initial tools
design 6 4 45 1 30 6.522 4.602 0.528 0.784 17.69

Values resulted from quadratic model 5.56 3.62 48 1 31.90 6.122 3.988 0.328 0.411 19.936
Values resulted from simulation 6.105 4.062 0.286 0.405 20.122

Nominal values 6.000 4.000 0.000 0.000 20.000


