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 OPTIMUM  TOOL  GEOMETRY  AND  PROCESS  PARAMETERS
PRESCRIBED  BY  A  NEURAL  NETWORK  MODEL  IN  THE  CASE

OF  CYLINDRICAL  PARTS  DEEP-DRAWING

Crina AXINTE

Abstract: Geometrical inaccuracy of sheet metal parts due to springback are the reason for considerable
efforts in the tool and process development. Numerous studies have been carried out in order to find the
optimum process parameters and tool geometry so that the resulted parts to be within tolerances. In the
present paper, the finite element method coupled to the neural network method are used to get the best
relation between process parameters and tool geometry in order to minimize the shape deviations of the
formed parts, related to the target geometry.
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1. INTRODUCTION

One of the considerations regarding the quality of
formed parts is dimensional and shape accuracy. The
dominate factor that affects the drawparts accuracy is the
springback phenomenon. Springback occurs in various
forms like bending, twisting, etc. and it is known that
many factors affect it, such as material mechanical prop-
erties (Young’s modulus, yield strength, Bauschinger
effect, etc.), tooling geometry (die shape, punch-die
clearance, tools radii), process parameters (blankholder
force, punch velocity, lubrication condition, etc). Spring-
back can be minimized by proper design of forming
process but it cannot be totally eliminated. Therefore, the
tools correction or change of process parameters should
be considered with respect the drawparts accuracy. To
accomplish this goal, avoiding the expensive trial error
approach specific to the experimental tests, the optimiza-
tion procedures based on the FEM simulation are cur-
rently used. The target of such “activity” is to determine,
using FEM simulation, all distortions of the part due to
springback and to compensate them by modifying the
virtual tools geometry before their construction.

In this paper, an optimization procedure based on the
implementation of an artificial neural network model for
the springback control, in the case of cylindrical drawn
parts, is presented.

In recent years, many research groups have investi-
gated the use of the artificial neural networks to control
the springback phenomenon. For example, Yang et al.
[1], Elkins [2], Forcellese et al. [3] used a neural network
to control the springback in a 60 deg. aluminium
V-punch air bending process. Ruffini and Cao [4] pro-
posed to use a neural network to control the springback
angle in a channel forming process of aluminium sheets,
Kinsey et al. [5] managed to maintain the springback
angle between the given limits using a variable blank-
holder force whose amplitude and moment of variation
on the punch stroke were prescribed by a neural network.

Viswanathan et al. [6] took up the Kinsey’s experi-
ment but for a different geometry of the part.

Fig. 1. Implementation of the optimization procedure.

In the case of the present analysis, the optimization
procedure assumes the following steps (Fig. 1): firstly,
the virtual parts are manufactured and their springback
parameters are determined. The obtained results are used
as training data for an ANN model, whose effectiveness
for springback predicting will be then tested. After the
neural network validation, it is used to find the best set of
process parameters/tool geometry that leads to a mini-
mum springback.

2. THE  OPTIMIZATION  PROCEDURE

2.1. Numerical simulations

Finite element analysis was used to simulate both, the
cylindrical deep-drawing process (by using the software
ABAQUS/Explicit) and the unloading phase (by using
the software ABAQUS/Standard). A three dimensional
axis-symmetric model was used in simulation. Only a
quart of the model was solved due to the symmetry con-
ditions (Fig. 2).  The  blank  was  considered  deformable
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Fig. 2. Geometrical model used in simulations.

with a planar shell base while the tools were considered
analytical rigid. The stress-strain curve of the material
(FEPO 5MBH steel) was implemented point-by-point
rather than using a curve fit equation. A slave-master
concept was used for the contact problem to impose
penalty regularization.

The simulations were performed accordingly to a
factorial plan of experiments. The profile of the virtual
parts was obtained by post-processing, into CAD software,
the coordinates of nodes representing the geometry of the
formed parts.

2.2. Implementation of the ANN model
The utilization of the artificial neural network in order to
find the optimum relation between the process parame-
ters, tools geometry and springback parameters in the
case of cylindrical drawn parts assumed the following
four steps (Fig. 3).

2.2.1. Data collection
The 27 combinations of the process parameters estab-
lished according to a fractional factorial experiment
design were used as input data for the neural network
and the values of the springback parameters resulted
from the simulations were used as their associated targets.

A two-layer neural network with a sigmoid activation
function between the input and hidden layers and a linear
activation function between the hidden and the output
layers was used.

2.2.2. Choice of the ANN model
Within the input layer, five neurons – respectively the
five analyzed process parameters (Rp, Rd, F, j, s)  (Fig. 4)

Fig. 3. Main steps for the ANN implementation.

Fig. 4. The process parameters.

Fig. 5. The geometric parameters of part.

were used; within the output layer, five neurons –
respectively the five analyzed geometric parameters of
the part (rp, rd, α, β, h) (Fig. 5) were also used. The
number of the neurons within the hidden layer must be
chosen so that the square means error to the end of the
training process to be minimum.

2.2.3. The learning process
The learning process was based on the back propagation
algorithm. This algorithm works as its name suggests:
after the propagation of an input through the network, the
error (difference between the real and the desired output)
is calculated and it is propagated back through the net
while the weights are adjusted in order to make the error
smaller.

An especially attention should be paid to the learning
phase correctness because a lower error, however, does
not always mean a better network. It is possible to over-
strain a network. This happens when the network starts
“memorizing” the training patterns, so that it is not able
to generalize anymore.

There are many graphic instruments to monitor how
the network is well learning. One of the simplest meth-
ods is to observe how the cost, which is the square dif-
ference between the network output and the desired re-
sponse, changes over training epochs. This graph of the
output error versus training epochs is called learning
curve. The learning curve decreases exponentially to
zero or a small constant when the learning process works
well (the network overstrain not occurs); otherwise the
learning curve will rise. Very useful in this sense is to set
aside a small percentage of the training data and to use
it  for  cross  validation,  which is a highly recommended
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Fig. 6. MSE/Training epochs.

criterion for stopping the training of a network. One
should monitor the error in the training set and the vali-
dation set, respectively. When the error in the validation
set increases, the training should be stopped. The goal
of the stop criterion is to maximize the network generali-
zation.

In the case of the present analyses, a cross validation
data set of 15% from the total inputs of the network was
used, the validation process being repeated for different
numbers of hidden neurons to determine which network
provided the lowest validation mean square error. For the
chosen ANN model, the optimum number of the hidden
neurons was set to 5. In Fig. 6 the learning curves for the
training data and the cross validation data, respectively
are presented in the case of using 5 neurons in the hidden
layer.

By analyzing the above diagram it could be seen that
the chosen ANN model leads to an adequate variation of
the learning curve; as consequence, the model will be
used to the next functional phase of the neural network.

2.2.4. Generalization
After training, the best test for a network performance,
however, is to prescribe correct outputs for that it has not
yet seen. In the case of the present analyses, a data set of
25% from the total inputs was given to the network.

In Fig. 7 and Table 1 respectively, a comparative
analysis of the desired outputs and the outputs prescribed
by the neural network is presented.

By analyzing the above diagrams and the data pre-
sented in the Table below, a good concordance between
the desired outputs and the prescribed ones could be
observed; as a consequence the neural network is vali-
dated.

2.3. Identification of the optimum process
parameters and tool geometry

In order to find the best set of parameters that lead to the
diminishing of the springback intensity, the above vali-
dated network will be tested for different combinations
of process parameters and tool geometry. The neural
network should prescribe the outputs for different inputs
without have defined the target values of these inputs.
Good results reported to the nominal geometry of the
parts were obtained for the following set of process pa-
rameters and tool geometry: Rp = 5.5 mm; Rd = 3.4 mm;
F = 49 kN; j = 1 mm; s = 30.3 mm.

Fig. 7. Comparative analysis of the desired/prescribed
outputs.
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To validate the neural network method, a simulation
has been performed using as input data the above set of
parameters and the obtained results were compared with
the nominal geometry of the part. In Table 2 the com-
parative analysis of the results is presented.

By analyzing the above results, a good agreement
between the nominal values of the geometric parameters
of part and those resulted from the simulation that used
as input data the process parameters prescribed by the
neural network could be observed. As consequence, it
can be considered as optimum the previous mentioned
set of process parameters/tool geometry. Based on these
results, an optimized geometry of tools was designed,
whose utilization, in conjunction with the optimized
process parameters allowed to obtain an improved accu-
racy of the formed part (Table 2).

3. CONCLUSIONS

An optimization procedure based on the neural network
method was applied in order to find the best relation
between the parameters of cylindrical deep-drawing
process and the springback parameters.

The geometrical parameters of the cylindrical parts
profile whose variation was investigated in order to
quantify the amount of springback were as fallows: the
radius of connection between the part flange and part
sidewall (rd), the radius of connection between the part
bottom and part sidewall (rp), the angle of the flange (α),
the inclination angle of part sidewall (β) and the height
of part sidewall (h).

The process parameters used in simulation in order to
investigate their influence on the springback intensity

Table 2
Comparative analysis of the results

rp rd a b h
Values prescribed by

the ANN model
6.078 4.034 0.425 0.491 20.076

Values resulted from
simulation

6.022 3.996 0.391 0.366 20.192

Nominal values 6.000 4.000 0.000 0.000 20.000

were as follows: the blankholder force (F), the punch-die
clearance (j), the punch stroke (s), the punch radius (Rp)
and the die radius (Rd).

By applying the optimization procedure, the devia-
tions of geometrical parameters of the virtual part
reported to the nominal profile decreased as follows:
with 95.4% for rp, with 99.2% for rd, with 91.8% h, with
74.1% for α and with 46.7% for β.

The optimization procedure based on the utilization
of neural network method conducted to a considerable
increasing of the part accuracy.
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Table 1

Comparative analysis of the results

Desired outputs Outputs prescribed by the ANN model
rp rd a b h rp rd a b h

6.626 4.450 0.612 0.859 21.606 6.615 4.759 0.518 1.046 21.181
7.558 3.350 0.909 1.443 18.984 7.506 3.893 0.744 1.113 18.501
4.793 4.307 0.801 0.831 21.799 5.060 4.378 0.713 0.654 21.655
7.594 3.396 0.728 1.424 20.947 7.326 3.557 0.698 1.564 20.801
5.589 3.525 0.938 1.565 20.619 5.692 3.595 0.856 1.310 21.141
5.608 3.388 0.742 1.192 22.964 5.533 3.659 0.665 0.856 22.291
7.485 5.494 0.313 0.348 18.971 7.297 5.488 0.302 0.612 18.289


