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Abstract: Representation by poles, as a way to substitute analytical or non-analytical profiles, was al-
ready used to profile tools for generating enwrapped surfaces by rolling method. In this paper, there are 
suggested algorithms to achieve an improvement of precision concerning the representation by poles of 
profiles to be generated, together to tools profiles. Examples are presented in the case of generating sev-
eral profiles with a rack-tool. 
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1. INTRODUCTION 
 

The possibility to represent profiles by poles is al-
ready known [2]. They have been also presented modali-
ties of using this way of profiles representation to study 
enwrapping processes concerning whirls of surfaces 
(profiles) associated to a couple of rolling centrods [5, 6]. 
Thus, couples of centrods circle - straight line, circle - 
circle, straight line – circle were studied; they correspond 
to generating technologies which use rack-type tools, 
pinion cutters and rotating cutters [3]. 

The study of enwrapping processes specific to this 
type of tools was realized based on plain generating tra-
jectories method [4] by establishing, in the end, a simpler 
scheme to represent both enwrapped profile and enwrap-
ping curve (tool profile) into a polar expression [5]. The 
specific problems were solved in the cases of elementary 
profiles: straight-line segment and arc of circle, [6]. 

The suggested methodology, [5] and the examples 
presented based on it, [6], relieved the possibility of us-
ing the representation by poles in the case of reciprocal 
enwrapping pairs of curves, associated to a couple of 
rolling centrods by highlighting the facility of applying 
this method in the conditions when particular elements of 
approximation curves can be used. 

However, specifications about the number of poles 
necessary to realize a correct approximation of en-
wrapped profiles and the influence of this number onto 
tools profiles precision of representation (compared to 
the results found by using classic methods) are missing. 

We further analyze, in the cases of established gener-
ating proceedings, by using a rack-tool, a pinion cutter or 
a rotating cutter to generate helical surfaces, based on 
each method specific kinematics, the modality to profile 
the tool. 
 
2. RACK-TOOL PROFILING 
 

Considering the case of a plain profile, owning to an 
ordered whirl of profiles and associated to a circular cen-
trod, C1, having Rrp radius, in rolling motion with the 

centrod associated to rack-tool, C2, the following refer-
ence systems are defined, see Fig. 1: 

- xyz, as a global system, having Oz as rotation axis; 
- XYZ – relative system, joint to the ordered whirl of 

surfaces; 
- ξηζ – relative system, joint to the rack-tool. 
The following relative motions can be now defined: 
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and X means the matrix formed from the co-ordinates of  
Σ curve (from whirl to be generated)  current  point              with 
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Fig.1. Rack-tool generating scheme. 



PX(λ) and PY(λ) meaning projections on the axis of Σ 
curve polar representation and λ – variable parameter. 

Thus, starting from (1), the family of curves Σ can be 
determined, into rack-tool reference system: 
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where φ is the angular parameter of C1 centrod rotation 
motion. 

In principle, family of profiles enwrapping curve, ex-
pressed in polar manner, represents rack-tool profile, if 
the enveloping condition is associated to these equations; 
Gohman expression [1] of the enveloping condition is 
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In relation (6), the vector ΣN

r
means the normal at Σ 

polar approximated surface 
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Starting from (2), ϕR
r

vector can be defined, as having 
the same direction as the speed in the relative motion 
between the space associated to C2 centrod and XYZ 
space, 
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or, after developing calculus, 
 

 
( )
( ) ϕ−λ−

ϕ+λ
=ϕ cos

sin

rpX

rpY

RP
RP

R .  (9) 

 
Thus, from (6), (7) and (9), the specific enveloping 

condition results as 
 

 ( )[ ] ( )[ ] 0'cos'sin =ϕ+λ+ϕ−λ λλ XrpXYrpY PRPPRP   (10) 
 

The ensemble of equations (5) and (10) are giving the 
rack-tool profile, reciprocal enwrapped to Σ profile, from 
the whirl of profiles to be generated, represented by 
poles. 

Finally, rack-tool profile, S, results as a matrix 
formed from the co-ordinates of points referred to ξη 
system, 
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In order to limit the maximum error between the ap-

proximate profile and the theoretical profile (found by 
analytical methods) [1], [3], to a set magnitude, we sug-
gest to realize successive approximations of rack-tool 
profile, S, by higher degree polynomial functions. 

 
 

Fig. 2. The tolerance field. 
 

Thus, if tool theoretical profile, S*, found by one from 
the fundamental theorems, is represented through the 
matrix 
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then a tolerance field can be established, referred to this 
profile, see Fig. 2, where the approximated profile should 
found itself. 

If we define 
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then a point (ξi ηi) of approximated profile is in the inte-
rior of the tolerance field if 
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where δ means the maximum admissible error, measured 
along the normal to the theoretical profile.  

Obviously, the deviation from the theoretical profile 
can be or can be not symmetrical along rack-tool theo-
retical profile. 

The enwrapping curve of Σ profile, given into a polar 
expression, can be found as S from relation (11), which 
is approximated by a curve expressed by poles, like it is 
shown in the scheme from Fig. 3. 

By successively making the approximation through 
polynomial functions of second, third and fourth degree, 
we can directly observe the effect of increasing polyno-
mial function degree onto the quality of the approxima-
tion. 

 
 
 
 
 
 

3.  NUMERICAL APPLICATIONS 
 

3.1. Rack-Bar Tool to Generate Exterior Slots 
The case of a shaft having exterior 8x52x60 mm slots 

was considered (Fig. 4). To observe the effect of ap-
proximation polynomial function degree increasing, sec-
ond, third and fourth degree functions were successively 
used to approximate the same rack-tool theoretical pro-
file. The results are shown through points co-ordinates, 
respective, in Tables 1, 2 and 3, near the theoretical pro-
file points co-ordinates, to realize a better comparison. 

 



 
 

Fig. 3. Scheme of finding the approximate profile. 
 

 
 

Fig. 4. Rack-tool profile to generate exterior slots. 
 

Table 1 
Rack-bar tool profiles (2nd degree approx. function) 

 
 

Theoretical Profile 
 

 

Approximated Profile 

ξ [mm] η [mm] ξ [mm] η [mm] 
4.9726    7.0319 4.9726     7.0319 
4.8763 6.9768 4.8631 6.9728 
4.7798 6.9221 4.7545 6.9145 
4.6835 6.8681 4.6468 6.8571 
4.5869     6.8145 4.5399 6.8006 
4.4902 6.7614 4.4340 6.7449 
4.3933 6.7088 4.3289 6.6900 
4.2967 6.6570 4.2247 6.6360 
4.1998 6.6056 4.1214 6.5829 
4.1030 6.5548 4.0189     6.5306 
4.0060 6.5045 3.9174        6.4792 

… … … … 
-0.0346     4.9999    -0.0346     4.9999 

Table 2 
Rack-bar tool profiles (3rd degree approx. function) 

 
 

Theoretical Profile 
 

 

Approximated Profile 

ξ [mm] η [mm] ξ [mm] η [mm] 
4.9726    7.0319 4.9726        7.0319 
4.8763 6.9768 4.8857 6.9782 
4.7798 6.9221 4.7973 6.9247 
4.6835 6.8681 4.7074 6.8716 
4.5869     6.8145 4.6160 6.8188 
4.4902 6.7614 4.5234 6.7663 
4.3933 6.7088 4.4295 6.7142 
4.2967 6.6570 4.3345 6.6625 
4.1998 6.6056 4.2385 6.6112 
4.1030 6.5548 4.1415 6.5603 
4.0060 6.5045 4.0436        6.5099 
3.9090 6.4548 3.9449 6.4599 

… … … … 
-0.0346    4.9999    -0.0346     4.9999 

 
 

Table 3 
Rack-bar tool profiles (4th degree approx. function) 

 
 

Theoretical Profile 
 

 

Approximated Profile 

ξ [mm] η [mm] ξ [mm] η [mm] 
4.9726    7.0319 4.9726        7.0319 
4.8763 6.9768 4.8691        6.9760 
4.7798 6.9221 4.7672 6.9209 
4.6835 6.8681 4.6669 6.8664 
4.5869     6.8145 4.5679 6.8126 
4.4902 6.7614 4.4700 6.7595 
4.3933 6.7088 4.3731 6.7070 
4.2967 6.6570 4.2770 6.6551 
4.1998 6.6056 4.1816 6.6038 
4.1030 6.5548 4.0866 6.5532 
4.0060 6.5045 3.9920 6.5031 
3.9090 6.4548 3.8977 6.4537 

… … … … 
-0.0346    4.9999    -0.0346     4.9999 

 
 

3.2. Rack-Bar Tool to Generate Arc of Circle Exterior  
 Elementary Profiles 

The case of an arc of circle exterior profile is now 
considered (Fig. 5). The input data were: X0 = -50 mm; 
Y0 = 0; r = 10 mm; °= 30Ô ; Rrp = 60 mm. 
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Fig. 5. Rack-tool profile to generate an exterior arc of circle. 

 



There have also been used, successively, second and 
fourth degree functions to approximate the theoretical 
profile. The results are shown through points co-
ordinates, respective, in Tables 4 and 5, near the theoreti-
cal profile points co-ordinates. 

 
Table 4 

Rack-bar tool profiles (2nd degree approx. function) 
 

 

Theoretical Profile 
 

 

Approximated Profile 

ξ [mm] η [mm] ξ [mm] η [mm] 
  -10.0000     -0.0104 -10.0000 -0.0104 
-9.9993 0.0640 -10.0010 0.0635 
-9.9979 0.1386 -10.0011 0.1378 
-9.9959 0.2135 -10.0005 0.2125 
-9.9931 0.2888 -9.9989 0.2875 
-9.9897 0.3646 -9.9966 0.3630 
-9.9855 0.4403 -9.9934 0.4389 
-9.9807 0.5169 -9.9894 0.5151 
-9.9751 0.5936 -9.9846 0.5918 
-9.9689 0.6706 -9.9789 0.6688 
-9.9619 0.7480 -9.9724 0.7462 

… … … … 
-8.5842 5.1208 -8.5842 5.1208 

 
Table 5 

Rack-bar tool profiles (4th degree approx. function) 
 

 

Theoretical Profile 
 

 

Approximated Profile 

ξ [mm] η [mm] ξ [mm] η [mm] 
  -10.0000     -0.0104 -10.0000 -0.0104 
-9.9993 0.0640 -9.9993 0.0639 
-9.9979 0.1386 -9.9980 0.1385 
-9.9959 0.2135 -9.9959 0.2134 
-9.9931 0.2888 -9.9932 0.2887 
-9.9897 0.3646 -9.9897 0.3644 
-9.9855 0.4403 -9.9856 0.4404 
-9.9807 0.5169 -9.9807 0.5167 
-9.9751 0.5936 -9.9752 0.5935 
-9.9689 0.6706 -9.9689 0.6705 
-9.9619 0.7480 -9.9619 0.7480 

… … … … 
-8.5842 5.1208 -8.5842 5.1208 

 
 
 
 

4.  CONCLUSIONS 
 

Numerical results show that increasing the approxi-
mating polynomial function degree, a significant im-
provement of approximated profile precision appears. 
Thus, in the case of exterior slots generating, if a 2nd de-
gree approximation function is used, maximum error is 
about 0.09mm, while in the case of a 3rd degree function, 
maximum error is only about 0.04 mm; best results were 

found by using a 4th degree function, maximum error 
decreasing to 0.02 mm. 

The same conclusions can also be drawn in the case 
of generating an exterior arc of circle. 

But using a superior degree approximation function 
do not bring only advantages; obviously, to use a 4th de-
gree function also means that the co-ordinates of 5 points 
owning to the theoretical profile must be known to find 
polynomial coefficients, instead of 3 points (in the case 
of a 2nd degree function).  

So, before choosing the degree of desired approxima-
tion function we must balance attentively between advan-
tages and disadvantages. 
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