
 

Proceedings of the 16th International Conference on Manufacturing Systems – ICMaS 
Published by Editura Academiei Române, ISSN 1842-3183 

 

“Politehnica” University of Bucharest, Machine and Manufacturing Systems Department 
Bucharest, Romania, 22 November, 2007 

 

 
 

MARKOV CHAINS APPLICATIONS IN THE MANUFACTURING SCH EDULE  
 

Constantin TÂRCOLEA, Adrian PARIS  
 
 

Abstract: The basic theoretical elements of the Markov chains are reviewed in the first part of the paper. 
An algorithm for the manufacturing schedule is developed, based on Markovian property. The manufac-
turing of a workpiece is analysed as numerical example. Different software for this type of problems is 
indicated in the last part of the paper. 
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1.  INTRODUCTION   
  

The study of the sequences of independent random 
variables is made of classical probability theory.  

A sequence of chance experiments is an independent 
trial process, if the possible outcomes for each experi-
ment are the same. In the modern probability theory are 
considered too sequences of dependent random variables, 
for which the knowledge of previous outcomes influ-
ences predictions for future experiments[1].  

In 1907, Andrei A. Markov introduced a new type of 
process, for which the outcome of a given experiment 
can affect the outcome of next experiment, but is condi-
tionally independent of the past, is memory less. A proc-
ess having markovian propriety is called a Markov chain. 
Given a finite or countable set ...}....,,{ niiiS 21= , a se-

quence of random variables ,...,...., nXXX 21 taking values 

in S is said to posses the markovian propriety if  
 

 
)XX(

)X,...,XX(

nn1n1n

11nn1n1n

iiP

iiiP

r

r

===

====

++

++
  

 
The collection of random variables is called Markov 

process and the set S is the state space of the process. 
The process starts in one of states and moves succes-
sively from one state to another. The definition states that 
the past history is forgotten and only the current state 
matters in determining the future behaviour. A Markov 
process is said to have a stationary transition probabili-

ties if )( 1 iXjXP nnr ==+  does not depend on n. In 

this case the process is called Markov chain and the ma-
trix )( 1 iXjXPpP nnrij ==== +  is named the transi-

tion matrix. The joint distribution of the random varia-
bles is not determined merely by the transition probabili-
ties. It is necessary to specify the initial distribution of 
the starting state for example by specifying a particular 
state as the starting state. We refer to the row vector 

,...),( 21 ππ=Π , where iiXP π== )( 0 , for all Si ∈ , as 

the initial distribution for the Markov chain.  
If P is a stationary transition matrix, then:  
 

 ...1,0,,,)( 1 =∈===+ nSjiPiXjXP n
ijnnr  

and  

 ...10,,,)()( =∈Π== nSiPiXP i
n

nr  
 
In 1913, in the paper [3], Markov chose a sequence of  

20 000 letters from Pushkin’s Eugen Oneghin, where the 
two states denoted the vowels and consonants, to see if 
this sequence can be considered a chain. He determined 
the Markov chain with transition matrix: 
 

              vowel consonant 

              








337.0663.0

872.0128.0
. 

 
In most manufacturing processes, calculation of 

probabilities of a system at different states, based on 
markovian property, plays an important part, to aid the 
decision making in an effective way.  

A state j is said to be accessible from state i if, there 
is a positive probability of getting from state i to state j in 
a finite number of steps. A state i is said to communicate 
with state j if it is true that both  i is accessible from j and 
j is accessible from i (written ji ↔ ). Because “↔ ” 

defines an echivalence relation on S, the state space is 
partitioned into disjoint classes. 

A state is said to be recurrent if the probability of re-
turning to state i in finitely many steps is 1; if this proba-
bility is less then 1, “< 1”, the state i is said to be transi-
ent. For a transient state, the expected number of returns 
to the state, given that is started at time 0, is finite. For 
the recurrent states the expected number is infinite. A 
state i of a Markov chain is called absorbing if 1=iip .  

A Markov chain is absorbing if it has at least one ab-
sorbing state, and if from every state more it is possible 
to go to an absorbing state in one step or more steps [2]. 
In an absorbing Markov chain, a state which is not ab-
sorbing is called transient [5]. 
 
2.  ABSORBING MARKOV CHAINS  
  

Let an arbitrary absorbing Markov chain. Renoted the 
states so that the transient states come first. The transi-
tion matrix will have the the following canonical form: 

vowel 

consonant 
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Here T is a square submatrix and represents transition 

matrix between transient states, the submatrix Q repre-
sents transition matrix between transient states and ab-
sorbing states and I is a square indentity matrix. In an 
absorbing Markov chain, the probability that the process 
will be absorbed is considered as: 

 

 ∞→→ nT n  as 0 . (2) 
 

Let j a transient state and νj the random variable, 
which represents the number of appearances of j. It de-
fines the random variable  uj

k , k≥0, which counters the 
appearances of state j as: 
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where Pi represents the probability in the case in which 
the initial distribution is concentrated in the state i, con-
sequently in the case in which the chain starts from the 
state i, while Mi represents the mean value, calculated 
relatively to probability Pi. The relationship (3) should be 
matricialy written:  
 

 (Mi(νj))i, j∈T = ...2

0

1 +++=−=∑
≥

− TTITIT
k

k )(  (5) 

 
The matrix:  

 

 1−−= )( TIN  (6)  
 
is called the fundamental matrix  of the Markov chain. 
The ij-entry nij of the matrix N is the espected number of 
times the chain is in state j, given that it starts in state i.  
With the help of fundamental matrix it should be calcu-
lated the second order moment and the variance of the 
random variable νj. It can be proved that the dimensions 
Mi(ν2

j) are finite and: 
 

 )())(( , INNMN dgTjiji −=ν= ∈ 22
2 , (7) 

 

where dgN represents the matrix which it obtains from N 

equaling with zero the elements from outside the princi-
pal diagonal. 

It results that the variances are given by the matrix: 
 

 Tjijiji MMD ∈ν−ν= ,))()(( 222 . (8) 
 

Also with the help of the fundamental matrix it 
should be calculated the probabilities, notated fij , so that 
the chain arrives in the state j, departing from the transi-
ent state i: 

 1
, )()( −

∈ −== dgTjiij NINfF . (9) 

 

Let ν the random variable which represents the time 
which the chain spends within the set T, namely:  
 

 ∑
∈

ν=ν
Tj

j . (10) 

 

The ν variable is called absorbing time. The vector  
of mean values of the absorbing time, noted: 
 

 Tiimm ∈= )(  (11) 
 
is given by: 
 

 ⋅=ν= ∈ NMm Tii ))(( e, (12) 
 
where e is  the unity vector. 

Let aik be the probability that an absorbing chain will 
be absorbed in the absorbing state k, if it starts in the 
transient state i. Let A be the matrix with entries aik; then: 
 

 NQaA TSkTiik == ∈∈ \,)( .       (13) 
 

As example lets be an absorbing chain, , having the 
absorbing states l + 1 and l + 2 and the transient  states 
1,…, l. The canonic form of its transition matrix is: 
 
    l+1 l+2  1   2 . . .   l 
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Using the relationships (6)-(13) it should be obtained 

for every lji ,, 1∈ : 
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The elements ijn of the fundamental matrix represents 

the mean time in which the workpiece  is in the  manu-
facturing stage j, prior to becoming end product, or scrap, 
if the workpiece starts its manufacturing cycle in the 
stage i. 
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and for every li ,1∈ : 
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Assuming that the workpiece taked into account is a  

shaft which is manufactured through a technological pro-
cess composed from four stages: first – cutting, then 
welding, heat treatment (annealing) and then the final  
quality control, evolving in automated cycle, we obtained 
the following results from experimental data: 
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1       0       0      0        0       0

0       1        0      0        0       0

0.02 0.97   0.01      0        0       0

0.04       0  0.94 0.02        0       0

 0.06       0       0 0.90   0.04       0

0.10        0       0     0   0.88  0.02

P

(20)

 

Applying the relations (14-19) it obtains the subsequent 
results: 
 




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
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



=

1.0101                 0            0         0

0.9688       1.0204            0         0

 0.9083      0.9566   1.0416         0

0.8156    0.8590   0.9353  1.0204

2N

(21) 

 
The elements under the principal diagonal are zero 

because the workpiece can not  pass in an subordinate 
manufacturing stage reportedly  to the state where it is. It 
can be observed that the values on the lines are decreas-
ing, from the left to the right, so that, as the workpiece 
advances in the technological process, these mean times 
become smaller.  
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1.0305              0            0         0

0.9884     1.0620            0         0

 0.9266     0.9956   1.1284         0

0.8321     0.8940   1.0133  1.062
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The elements ijf of the matrix F represent the proba-

bility that the workpiece found into the manufacturing 
stage i will arrive in the stage j. It can be observed that 

,, jiff ijii <<< since is more credible that the  workpiece 

pass into a superior stage than to be  reworked 
 

 m = 
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. (25) 

 
The components of the vector m represent the mean 

manufacturing working time until it obtains the finished 
product, respectively scrap, if the workpiece is  initialy in  
the i manufacturing stage. As sun as the workpiece is into 
a more advanced manufacturing stage, the more so as its 
mean duration is smaller.  

In the analised case, by example, the mean manufac-
turing duration, when the workpiece is initialy at the first 
stage, is 3.6302 time units, while it is at the thirth  stage, 
the mean manufacturing duration will be 1.9892 time 
units 
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The dimensions 1+lia , , 2+lia , represent the probabili-

ties that the workpiece beeing into the i stage to become  
finished product, respectively scrap.  

As consequence, for the  data from above, 
7911.015 =a , that it can be translated as the probability 

that the workpiece found into the first manufacturing 
stage becomes finished product, namely generalizing, 

5ia is the reliability of the workpiece technology, which 

was initialy found at the i stage, but 2089.016 =a  is the 

probability to become scrap.  
The model presented above permits to calculate the  

mean losses, knowing for every manufacturing stage the 
probabilities that the workpiece to become scrap and the 
prices of the scrap workpiece after every manufacturing 
stage. 
 
3.  GRAPHS AND APPLICATIONS  
 

Let nX  a finite Markov, homogeneous, with the state 

set }{ ,...2,1 nS = 0Π - the initial distribution and 

( )ijpP =  the transition matrix. The graph, noted 

( )Γ= ,SG , where Γ is a  subset of the cartesian product 
2S , definited through the relationship:  
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Fig. 1. The graph associated to the Markov chain. 
 
 

 
 

Fig. 2. The Java applet for Markov chain. 
 
 

 
 

Fig. 3. Results obtained with Java applet for Markov chain. 
 ( ) 0>⇔Γ∈ ijpji, ,  
 
is named the graph associated to the Markov chain. Mar-
kov chains can be described by a graph. The edged are 
labeled by the transitional probabilities of going from 
one state to the other states. In our case the graph is pre-
sented in Fig. 1. 

In a complex technological process the calculus be-
comes laborious [4] and it is useful the utilization of a 
adequate software: basically, having the initial distribu-
tion and the matrices of the transition probabilities, even 
in the stationary case, then in the unstationary, general 
one,   the problem is effectively reduced to the matrix 
calculus. As soon as it is not available a professional 
software for mathematics /statistics like Mathcad, 
Mathlab etc. it is always possible to use with more effort 
very popular programs as Excel, or is possible to work 
with some freeware programs as XNUMBERS MULTI -
PRECISION FLOATING POINT COMPUTATION and 

NUMERICAL METHODS for EXCEL-XNUM-
BERS.XLA - Ver. 5.5 - Update of Aug. 2007 [6], very 
easy to install and working under Excel. The large inter-
est for Markov chains is illustrated by the development 
of a special software like the Program Absorbing Chain, 
which calculates the basic descriptive quantities of an 
absorbing Markov chain, from the Dartmouth University 
[7]. The software can be used on line, with Java Applets 
(Figs. 2 and 3) (the notations have a slightly different 
meaning compared with the above calculus). 
 
4.  CONCLUSIONS 
 

The theoretical bases of the presented model are ap-
proached in the related literature (Iosifescu, Karlin). The 
main part of the paper is the application of the mathemat-
ical theory at the usual manufacturing problems. The 
study utility consists in the fact that the obtained results 
can be used for an effective design of the actual strate-
gies in manufacturing.  
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