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MARKOV CHAINS APPLICATIONS IN THE MANUFACTURING SCH EDULE

Constantin TARCOLEA, Adrian PARIS

Abstract: The basic theoretical elements of the Markov chains are reviewed in the first part of the paper.
An algorithm for the manufacturing schedule is devel oped, based on Markovian property. The manufac-
turing of a workpiece is analysed as numerical example. Different software for this type of problems is

indicated in the last part of the paper.
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1. INTRODUCTION

The study of the sequences of independent random

variables is made of classical probability theory.

and
B (X, =i)=(MP");,,i0S,n=0,1..

A sequence of chance experiments is an independent In 1913, in the paper [3], Markov chose a sequerfice

trial process, if the possible outcomes for eacpeax
ment are the same. In the modern probability themey

20 000 letters from Pushkin's Eugen Oneghin, whieee
two states denoted the vowels and consonants,etdf se

considered too sequences of dependent random kjab this sequence can be considered a chain. He deeuimi

for which the knowledge of previous outcomes influ-

ences predictions for future experiments[1].

In 1907, Andrei A. Markov introduced a new type of
process, for which the outcome of a given experimen

can affect the outcome of next experiment, butoisdc
tionally independent of the past, is memory lesqréc-
ess having markovian propriety is called a Markbaio.
Given a finite or countable seb={i},i5....,i,...}, a se-

qguence of random variables,, X,,....X,,,...taking values
in Sis said to posses the markovian propriety if

B (X1 =lna |Xn Slpyen Xy =ip) =
=R (Xni Zinn |Xn =iy)

The collection of random variables is callgtérkov
process and the set S is tha&ate space of the process.

the Markov chain with transition matrix:

vowel consonant
vowel 0128 0872
consonant | 0663 0337|

In most manufacturing processes, calculation of
probabilities of a system at different states, Hase
markovian property, plays an important part, to tad
decision making in an effective way.

A state | is said to baccessible from state i if, there
is a positive probability of getting from stateidtate j in
a finite number of steps. A state i is said to camivate
with state j if it is true that both i is accedsifrom j and
j is accessible from i (writteri » j). Because ‘- ”

defines an echivalence relation on S, the stateespa

The process starts in one of states and moves succePartitioned into disjoint classes.

sively from one state to another. The definiticatess that
the past history is forgotten and only the currstate
matters in determining the future behaviour. A Mark
process is said to have a stationary transitiotaiii-

ties if B (X, =] |Xn =i) does not depend am In
this case the process is called Markov chain aadth-
trix P=p; =R (Xpy =] |X,=i) is named theéransi-
tion matrix. The joint distribution of the random varia-
bles is not determined merely by the transitiorbatuli-
ties. It is necessary to specify the initial disttion of
the starting state for example by specifying aipaldr
state as the starting state. We refer to the roetove
M =(m,1m,...), where P(X, =i) =1, for all iOS, as
the initial distribution for the Markov chain.

If P is a stationary transition matrix, then:

P (Xpy =] [Xq=1)=R"

i, j0S,n=0.1..

A state is said to beecurrent if the probability of re-
turning to state i in finitely many steps is 1thfs proba-
bility is less then 1, “< 17, the state i is saallietransi-
ent. For a transient state, the expected number ofrret
to the state, given that is started at time Ojnief For
the recurrent states the expected number is iafint
state i of a Markov chain is callethsorbing if p; =1.

A Markov chain isabsorbing if it has at least one ab-
sorbing state, and if from every state more itasgible
to go to an absorbing state in one step or mops $85.

In an absorbing Markov chain, a state which is aimt
sorbing is called transient [5].

2. ABSORBING MARKOV CHAINS

Let an arbitrary absorbing Markov chain. Renotesl th
states so that the transient states come first. tietmesi-
tion matrix will have the the following canonicalrm:
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p:E IQ} L F=(f;)ijor =(N=1)Ng. (9)
Let v the random variable which represents the time
HereT is a square submatrix and represents transitiorwhich the chain spends within the 3enamely:
matrix between transient states, the subma@rirepre-
sents transition matrix between transient statek ain V= Z"j _ (10)
sorbing states antis a square indentity matrix. In an joT
absorbing Markov chain, the probability that thegass

will be absorbed is considered as: The v variable is calledabsorbing time. The vector
of mean values of the absorbing time, noted:
Tn - 0asn - o, (2)
m= (M )icr (11)
Let j a transient state ang the random variable,
which represents the number of appearancgs lofde- is given by:
fines the random variabley*, k=0, which counters the
appearances of stgtas: m=(M;(V))igr =N L& (12)
w1 X = whereeis the unity vector.
Ui =10 i X %] (3) Let a; be the probability that an absorbing chain will

be absorbed in the absorbing sthtef it starts in the

. transient state Let A be the matrix with entrieg; then:
Obwouslyvj :Zuhﬁ andfollows: i

k20 A= (ay)ior ks = NQ. (13)

Mi(v;) =Y 10R (X = J)+O0R (X, # )= D pff (4) As example lets be an absorbing chain, , having the
k=0 k=0 absorbing states | + 1 and | + 2 and the transigtates

whereP; represents the probability in the case in whichl""’ |. The canonic form of its transition matr i

the initial distribution isconcentrated in the statd, con-
. : : . +11+2 1 2...
sequently in the case in which the chain startmfthe

I

statei, while M; represents the mean value, calculated l+17 1000 .0
relatively to probabilityP;. The relationship (3) should be lI+2 01 0 0. ..0
matricialy written: 1 0 r .0

P 1M P (14)
2 0g, 0 r, .. 0
(M)ijor= D T =(1 =T) =1 +T+T?+... (5) I

k=0 I p, g, 00..r,

The matrix: . ) ) .
Using the relationships (6)-(13) it should be ot
N=(-T)* (6) foreveryi, jOL1:
is calledthe fundamental matrix of the Markov chain. Pi - Pja o
Theij-entry n; of the matrixN is the espected number of @a-r)..a-r)’ b=
times the chain is in state j, given that it stantstate i. 1 o (15)
With the help of fundamental matrix it should bécoa ng =M;(v;)= -1 i=1],
lated the second order moment and the variancéeof t 0 ' P>
random variabley;. It can be proved that the dimensions ' '
M;(v?) are finite and:
N, = (Mi(VJZ))i jor =N(@Ngg = 1), (7) The elements; of the fundamental matrix represents

the mean time in which the workpiece is in the nma
where Ny, represents the matrix which it obtains frdin  facturing stage j, prior to becoming end producs@ap,
equaling with zero the elements from outside thagpr if the_ workpiece starts its manufacturing cycle the
pal diagonal. stage.
It results that the variances are given by the imatr

P .. pj—l 1+rj |<]

D?=(M; (v]) =MZ(v ) jor - ®) A=r)-@=r)=r " 7 (1)
Mi(v.?) = Sl
Also with the help of the fundamental matrix it o a-r)?’
should be calculated the probabilities, notéfedso that 0, P>,
the chain arrives in the stgtedeparting from the transi-
ent state:




P - Pja

—— i<,
(1-r)...(A-rj4)
fij =41, i= j’ (17)
0, i>j,
and for everyi 01,1 :
[
m :Mi(Vj):Znij =
j=1
I . .
iq.z &,1S| <|l
_J1-r = 1-r)... @-rp) (18)
1 .
PP |:|1
(1-r)
a .= Pi - By
M) ..a-n)’ (19)
8142 =1- 841
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002 0.8980 0.8418 0.8075
0 004 09375 0.8992
0 0 002 09592
0 0 0 001

The elementsf; of the matrix F represent the proba-

bility that the workpiece found into the manufaatgr
stage i will arrive in the stage j. It can be obselrthat
fij << fjj,i < j,since is more credible that the workpiece
pass into a superior stage than to be reworked

3603

2.9066
m= . (25)
1.9892

1.0101

The components of the vector represent the mean
manufacturing working time until it obtains theifhed
product, respectively scrap, if the workpiecendtialy in
the i manufacturing stage. As sun as the workpea#o
a more advanced manufacturing stage, the more &g as

Assuming that the workpiece taked into account is anean duration is smaller.

shaft which is manufactured through a technologice}
cess composed from four stages: first
welding, heat treatment (annealing) and then thal fi
quality control, evolving in automated cycle, wdaahbed
the following results from experimental data:

002 08 0 0 0 0.10

0 004 090 0 0 006 | (20)
5|0 0 002 094 0 0.04

0 0 0 00l 097 002

0 0 o o0 1 0

0 0 o o0 0 1

Applying the relations (14-19) it obtains the suhpgent
results:

1.0204 0.9353 0.8590 0.8156 (21)
N 0 1.0416 0.9566 0.9083
2 0 0 1.0204 0.9688
0 0 0 1.0101

In the analised case, by example, the mean manufac-

— cuttingnth ,ing duration, when the workpiece is initialythe first

stage, is 3.6302 time units, while it is at thetthistage,
the mean manufacturing duration will be 1.9892 time
units

0.79110.2089
0.88110.1189
0.93980.0602|
0.97980.0202

(26)

The dimensionsy, |,;, & ., represent the probabili-

ties that the workpiece beeing into the i stagbecome
finished product, respectively scrap.

As consequence, for the data from above,
a5 = 0.7911, that it can be translated as the probability
that the workpiece found into the first manufaatgri
stage becomes finished product, namely generalizing

The elements under the principal diagonal are zerodsis the reliability of the workpiece technology, whi
because the workpiece can not pass in an subtedinawas initialy found at the i stage, bat, = 0.2089 is the

manufacturing stage reportedly to the state whase It
can be observed that the values on the lines ameake
ing, from the left to the right, so that, as therkpoece
advances in the technological process, these niess t
become smaller.

1.062 1.0133 0.8940 0.8321

N2 |0 1.1284  0.9956 0.9266 - (22)
27 1o 0 1.0620 0.9884
0 0 0 1.0305
0.0208 0.1384 0.1561 0.1669
0 0.0434 0.0805 0.1011
D? = . (23)
0 0 0.208 0.0497
0 0 0 0.0102

probability to become scrap.

The model presented above permits to calculate the
mean losses, knowing for every manufacturing sthge
probabilities that the workpiece to become scrag the
prices of the scrap workpiece after every manufaoju
stage.

3. GRAPHS AND APPLICATIONS
Let X, a finite Markov, homogeneous, with the state

set S={12...n},|‘|o— the initial distribution and
P=(pij) the transition matrix. The graph, noted

G= (S, I'), wherel is a subset of the cartesian product

S?, definited through the relationship:
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NUMERICAL METHODS for EXCEL-XNUM-
BERS.XLA - Ver. 5.5 - Update of Aug. 2007 [6], very
easy to install and working under Excel. The larger-
est for Markov chains is illustrated by the devehemt
of a special software like the Program Absorbingi@h
which calculates the basic descriptive quantiti€sam
absorbing Markov chain, from the Dartmouth Univigrsi
[7]. The software can be used on line, with Javaléis
Fig. 1. The graph associated to the Markov chain. (Figs. 2 and 3) (the notations have a slightly etiht
meaning compared with the above calculus).

omputes for an absorbang Maskow Cham the mataces M, B, and vector t, 4. CONCLUSIONS
b states and abeosing states and then, affer clicking on “create’, you mpu ) )
The theoretical bases of the presented model are ap

Transien stitas = 4 proached in the related literature (losifescu, iarlThe

MBsoming slates= 2 main part of the paper is the application of thehmmat-
Create ical theory at the usual manufacturing problemse Th
study utility consists in the fact that the obtaimesults
Fig. 2. The Java applet for Markov chain. can be used for an effective design of the actrates
gies in manufacturing.
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comes laborious [4] and it is useful the utilizatiof a Absor bi ngChai n/ Absor bi ngChai n. ht m
adequate software: basically, having the initiatrithu-

tion and the matrices of the transition probaleiitieven  aAuthors:

in the stationary case, then in the unstationaenecal
one, the problem is effectively reduced to therixa
calculus. As soon as it .is not a\{ai!able.a protessi matics,
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