
 

Proceedings of the 17th International Conference on Manufacturing Systems – ICMaS 
ISSN 1842-3183 

 

University POLITEHNICA of Bucharest, Machine and Manufacturing Systems Department 
Bucharest, Romania 

 

 
 

NUMERICAL MODELING OF  
WIRES AND FIBERS EXTRUSION 

 
Maria NEAGU, Mircea NEDELCU 

 
 

Abstract: This paper is an analysis of an extruded wire/fiber cooled by a fluid that flows in the same di-
rection as the workpiece. The governing equations are written in dimensionless form and they are solved 
using the finite differences method. The obtained temperature and velocity fields are analyzed for differ-
ent parameters: Peclet number and wire/fiber velocity. This analysis offers a better understanding of the 
extrusion process and a direct technological application by presenting the variation of the cooling tunnel 
optimum length as a function of the most important parameter: the Peclet number.   
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1. INTRODUCTION   
 

The wires and fibers extrusion is a research domain 
that received great attention in the last decades [1 − 4]. 
The complete knowledge of the phenomena that are tak-
ing place after the wires/fibers extrusion in the cooling 
tunnel can help us not only to understand the influence of 
different process or material parameters on the process 
development but also to design the technological process 
and installation. 

This research subject is of special interest not only for 
the wires/fibers extrusion but for hot rolling, glass fibers 
drawing, continuous casting, etc. The general problem is 
concerning a cylinder with a high initial temperature 
coming out from the die or furnace and moving horizon-
tally [1, 3, 4] (or vertically [2], in some cases) with a 
constant velocity. An aiding or opposing fluid flow is 
generating a forced convection process that accelerates 
the wire/fiber cooling process.  

Steady state [4] or transient [1, 2, 3] approaches were 
used in order to establish and solve the conservation 
equations for mass, momentum and energy. The solution 
of the resulting system of equations is revealing the ve-
locity and temperature fields for the cooling fluid and the 
workpiece. Thus, in order to fully understand the cooling 
process, further research on the influence of different 
parameters on this process was developed. 

This paper is making a step forward in the analysis of 
wires/fibers extrusion. It considers a horizontal cylindri-
cal wire/fiber moving with a constant velocity and a 
cooling fluid moving in the same direction. Steady-state 
situation was considered and the finite differences 
method was used to solve the governing equations in 
dimensionless form. But, having in view the large differ-
ence between the radial and axial dimensions of the set-
up, a different approach was used by defining the axial 
computational coordinate, ξ. After the velocity and tem-
perature fields were found, we proceeded in two direc-
tions: a complete analysis of the technological process 
and the definition of optimum design principles for the 
industrial installation. The dependence of the cooling 

system optimum length on the Peclet number and the 
fluid velocity is discussed in the paper.   

This paper, through an original and proper derivation, 
is bringing the theoretical analysis of the wire/fiber cool-
ing process to the final practical point of determinning 
the cooling optimum length. It opens the road to further 
research that could finally establish a design formula of 
the industrial system. 
 
2. MATHEMATICAL MODEL 
 

Figure 1a presents the cylindrical workpiece of radius 
rs, the workpiece that emerges from the extrusion die or 
furnace. It moves with the constant velocity us while the 
cooling fluid moving in the same direction determines a 
forced convection process with the initial velocity uinf. 
The fluid has an initial temperature T0. The cooling tun-
nel length is Lt. Neglecting the gravitational force influ-
ence, the problem becomes symmetric and only the upper 
half will be analyzed in a cylindrical coordinates system 
as presented by Fig. 1. 
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Fig. 1. Wires and fibers extrusion (a); 

 dimensionless problem (b). 
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 The fluid governing equations for mass, momentum 
and energy as well as the workpiece governing equation 
for the energy are considered in vorticity (ω) − stream 
function (ψ) formulation: 
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where (u, v) is the fluid velocity field with its two com-
ponents on the x and r axis. 

The governing equations and the whole problem are 
transformed in dimensionless form (Fig. 1, b) using the 
following dimensionless variables [1]: 
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where t is time, αs and α are the thermal diffusivities of 
the workpiece and fluid, respectively, ν is the fluid kine-
matic viscosity, Pe = usrs/αs, Pr = ν/α and Re = usrs/ν are 
Peclet, Prandtl and Reynolds number, respectively. Hav-
ing in view the difference between the x and r dimen-
sions and a higher precision for the solution, we used the 
transformation 1−= ξeX  that defines the (ξ, R) compu-
tational domain. The governing equations become: 
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 The boundary conditions imposed in the computa-
tional domain express the physical realities:  

 • at the right boundary of the domain, ( )LX = , 

Lξ=ξ , small variations of the variables are imposed [1]: 
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• at the left boundary of the domain ( 0=X

correspond to the entrance region: 
 

2

2RU inf=Ψ ; 

 
0=Ω ; 
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 θ = 1 for the solid  (8) 
 

• at the solid/fluid interface, 1=R , no slip and no 
penetration conditions are imposed for the velocity field 
while the continuity of temperature and heat flux are im-
posed for the temperature field : 
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where: the first subscript is the line of the grid and the 
second subscript is the column number; ΔRf is the space 
on the radial network in the fluid domain: 

( ) fw RNR Δ−=− 11 , while ΔRs is the space on the radial 
network in the workpiece domain: ( ) sRN Δ−= 11 ; K is 
the ratio of the fluid and solid thermal conductivities. 

• at the tunnel wall (the upper boundary), wRR = , 
the no slip and no penetration conditions are imposed for 
the velocity field while a constant temperature case is 
considered for the temperature field: 
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• at the symmetry axis, 0=R , the boundary 
condition for temperature express the symmetry 
approach: 
 

 0=
∂

θ∂
R

. (11) 

 
 Solving the governing equations (3 − 6) with the 
boundary conditions (7 − 11) allows the analysis of the 
velocity and temperature fields and determines the opti-
mum design for the technological installation.  
 
3. NUMERICAL METHOD  
 

) , ξ = 0, 
the boundary conditions for the fluid and workpiece  

 The finite differences method was used to solve the 
governing equations [5]. The finite differences were cen-
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tered in the computation domain. The exception was 
made by the boundary points where forward or backward 
finite differences were used. An iterative process solved 
the velocity field calculating the vorticity and the stream 
function fields and, further, the temperature field was 
found. Crank-Nicolson method was used for Ψ and θ 
solutions while "alternating direction implicit" method 
was used for Ω. 

 Having in view the cooling tunnel length, Lt, and the 
workpiece radius, rs, a grid with 50 points on both x and r 
(50 points for the fluid and another 50 points for the 
fluid) direction was used. A transient term was used for 
solving Ψ and Ω with a time step 710−=τΔ . 

 
4. RESULTS AND DISCUSSIONS 
 

 Intense research was performed trying to determine 
the parameters that have a significant influence on the 
cooling process and on the industrial installation design. 
The physical properties considered in this study are pre-
sented by Table 1 while the parameters analyzed were:  
the tunnel radius, Rw, the tunnel wall temperature, Tw, the 
fluid/solid thermal conductivities ratio, K, the fluid ve-
locity, Uinf, etc.  
 Fig. 2 presents the isotherms (Fig. 2a) and the stream-
lines (Fig. 2b) for the following parameters: Pe = 100,   
Re = 20, Rw = 6, Uinf = 2. From Fig. 2a, we can notice that 
a high Peclet number, a small wire/fiber thermal diffusiv-
ity, leads to a slow cooling of the workpiece. A compari-
son can be made studying the isotherms (Fig. 3a) and the 
streamlines (Fig. 3b) obtained by changing only Peclet 
number, Pe = 0.6. The influence of this parameter on the 
temperature field underlines the dependence of the cool-
ing tunnel length on Peclet number. 
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Fig. 2. Isotherms (a) and streamlines (b) for  

Pe = 100, Rw = 6, Uinf = 2. 

Table 1 
Physical properties 

 

Solid/ 
Liquid 

Thermal 
diffusivity 

Thermal 
conductivity 

Kinematic 
viscosity 

Teflon 0.001cm2/s 0.23W/m/K - 
Water 0.001cm2/s 0.59W/m/K 0.01cm2/s 
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Fig. 3. Isotherms (a) and streamlines (b) for  
Pe = 0.6, Rw = 6, Uinf = 2. 
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Fig. 4. Centerline temperature variation, θc, for two values of  
Peclet number: 100 and 0.6. Rw=6, Uinf=2. 

 
 This aspect is clearly emphasized by Fig. 4 that pre-
sents the centerline wire/fiber temperature variation for 
two values of Peclet number: 100 and 0.6. A higher Pe-
clet number (in other words, a smaller workpiece thermal 
diffusivity and/or a higher wire velocity and/or a bigger 
wire radius) implies a slower cooling process. Conse-
quently, the value of the cooling tunnel length of the in-
dustrial system must be higher. 
 Defining Lopt as the cooling tunnel optimum length at 
the end of which the temperature θ has a value of 0.01, 
Fig. 5 presents the Lopt variation as a function of Peclet 
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number. Evidently, Lopt increases as Peclet number, Pe, 
increases (the wire/fiber velocity and/or radius increases 
and/or the workpiece thermal diffusivity decreases). 

 The influence of the initial fluid velocity, Uinf, on the 
optimum length of the cooling system, Lopt, was also 
studied using the developed model. If the influence of the 
initial fluid velocity on the velocity field can be analyzed 
using Fig. 6, its influence on the workpiece temperature 
field profile is presented by Fig. 7 for two of its values: 
Uinf = 2 (Fig. 7a) and Uinf = 4 (Fig. 7b). Even if its influ-
ence can be noticed for the center workpiece temperature 
evolution, at two positions on the X axis: 4.98 and 10.35, 
in the end, the variation of the cooling system optimum 
length on the initial fluid velocity is not significant and 
Peclet number remains the most influential parameter.  
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5. CONCLUSIONS 
 

This work presents the numerical model of wires/fibers 
extrusion. The stationary case is considered for a cooling 
fluid flowing in the same direction as the workpiece in a 
dimensionless vorticity-potential formulation; 

 
Fig. 5. The variation of the cooling tunnel optimum length, Lopt,   

as a function of Peclet number, Pe; Rw = 6, Uinf = 2. 
 The governing equations are solved using the finite 

differences method through an iterative process in an 
original analytical and numerical derivation; 
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The optimum length of the cooling tunnel is defined 
and analyzed as a function of different material and proc-
ess parameters. The Peclet number has the most signifi-
cant influence on the optimum length, Lopt; 

This analysis offers solutions for the optimum design 
of the wires/fibers extrusion system and can be used fur-
ther to define a design formula for the cooling system 
optimum length.    
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Fig. 7. Temperature variation in two workpiece cross-sections: 
X = 4.98 and X = 14.35, for Uinf = 2 (a) and Uinf  = 4 (b);   

Pe = 100, Rw = 6. 
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