

Proceedings of the 17th International Conference on Manufacturing Systems – ICMaS
ISSN 1842-3183

University POLITEHNICA of Bucharest, Machine and Manufacturing Systems Department
Bucharest, Romania

MODELING WORK CELLS AND MANUFACTURING SYSTEMS FOR SCALABLE
FLEXIBILITY IN MANUFACTURING

Ilie Octavian POPP, Ioan Barsan, Dorin TELEA

Abstract - A framework for organizing resources consisting of hardware devices (such as machine
tools, robots, conveyors, etc) and software modules (such as cell controller, monitoring software) in a
CIM environment has been developed. We focus on the basic building blocks of the framework and are
given some sample configuration files for the resources and the work cell.

Key words: FMS, reference architecture, modeling, supervisory control/synchronization, configuration file.

1. INTRODUCTION

The work cell can be setup to support different manu-
facturing environments. A work cell can be configured to
have multiple buffers, separate I/O ports storage transpor-
tation devices and so on. The ports associated with each
device and the connectivity information is defined in the
work cell configuration file. The job routes supported at
the work cell level are also specified in the configuration
file. The operational logic of the work cell controller in
such architecture is relatively independent of its configu-
ration. The appropriate procedure calls (handshake mes-
sages) are made on the devices sequentially as given in the
job definition. The cell controller waits on an acknowl-
edgement from the resource module before making the
next call as explained in paper Ref. [2] and paper Ref. [4].

The problem of supervisory control/synchronization in a
flexible-manufacturing environment is one of the most
difficult problems designers’face in the conceptualizing of
a Flexible Manufacturing System. It is clear that manufac-
turing flexibility induces complexity. This research and
development effort proposes such a reference architecture
that will allow for the control and reconfiguration of a
flexible manufacturing work cell. This architecture will
address many different issues, such as, the type of re-
sources in the system, system capabilities, system behav-
ior, and architecture interfaces. It also develops the rules
for synthesizing complex manufacturing systems.

The steps involved in modeling work cells and manu-
facturing systems are described in Ref. [1] and Ref. [5].

• The configuration files for each of the basic resource
has to be written. These files define the capacity of the
resource, the capabilities of the machine (programs, con-
figurations) and the group to which it belongs amongst
other things.

• The configuration file for the work cell has to be
written. This file defines all the resources that a work cell
is composed of. In addition, this configuration file con-
tains defines the connectivity information and the various
routes followed by the different job types.

• To attach machine simulators to each of the basic re-
sources, device driver files have to be written that trans-
lates commands from the module controllers to the simu-
lators and vice versa.

Note the use of a Finite State Automata class in Fig. 1.
All transactions and messages in the work cell as well as
resources are derived from a state Machine. This implies
that all the resources have a strict notion of their current
states and all the events are state driven.

The fields that are mandatory fields in a configuration
file are the following:

• The name used to locate the resource in the distrib-
uted environment.

• The type of the resource
• The server kind field that serves as a de-multiplex

key.
• The (buffer) capacity of the resource.
• The port numbers in a resource
• The total number of setups supported by the resource.
• The programs supported in each setup. A program Id

(PID) and a filename describe a program.
The additional fields that have to be described in a

configuration file for a composite member are described
below:

• The members (resources) that the work cell is com-
posed of.

• The capacity of each of the resource.
• The in-ports and out-ports of each of its resource.

Fig. 1. The OMT diagram for the transaction class and the re-
ceived message used in the work cell and

the resource server class.

52

• The connectivity information that describes how the
ports of the resources are connected to each other.

• There are two keywords used in defining the connec-
tivity information. 'TO' is used to describe one-way con-
nectivity between ports while 'ONTO' means that the con-
nectivity between the ports is two-ways.

• The different job types (routes) supported in each
configuration. A route is described by a sequence of
stages each stage defined by the resource that the job
needs at that stage.

The device drivers for a storage type and a processor
type have been described above.
The steps involved in defining a device driver are given
below:

• Define the ports of the device.
• The link of the mechanism associated with the port.
• The location of the port with respect to the link co-

ordinates.
• Define the programs associated with accept, remove,

prepareAccept and prepareRemove commands at various
ports.

• Define the mapping between programs IDs (PID) and
the programs that would be run by the devices.

However, the portmaps have to be defined differently
if the capacity of the device is greater than one. The pro-
gram associated with the accept, remove, prepareAccept
and prepareRemove commands are indexed both by the
port and the buffer ID.

2. TEST CASES MODELED USING THIS

ARCHITECTURE

A. Case 1
A simple work cell composed of base resources has

been tested successfully using our architecture. The work
cell consists of a three-axis machine tool (a unit proces-
sor), a pallet changer and an input/output buffer (Fig. 2).
The pallet changer is fed jobs/parts from the work cell
buffer and it feeds the jobs into the machine tool. The pal-
let changer picks up a processed job from the machine
tool and transfers the job into the output buffer of the
work cell.

In the above setup, the capacity of the work cell is four
while the processor is of unit capacity. In such a configu-
ration, the interactions between the pallet changer and the
processor are dynamic in the sense that they are dependent
on the processing time spent by each job on the machine
tool and the time at which different jobs enter the system.
The controller of the work cell automatically al-
lows/disallows different transitions thereby avoiding con-
flicts. Some sample configuration files for the resources
and the work cell are given below. The device driver file
for this example is also listed below.

Configuration file for the work cell (composite member):

WORKCELL work cell1 {OWNER: NONE
SERVERKIND: WorkStation
CONFIGURATIONS: 1
ME MT1
CURRENT_CONFIG: 1

Fig. 2. Schematic sketch of a work cell consisting of a pallet
changer and a machine tool.

RESOURCES {DEVICE: DEVICENA
CONFIGURATIONS: 1
CURRENT_CONFIG: 1
RESOURCES {DEVICE: DEVICENAME MT1
CAPACITY 1 TYPE PROCESSOR PORTS
{INPORTS: P1 OUTPORTS: P1}
DEVICE: DEVICENAME DUMMY CAPACITY 1000
TYPE STORAGE PORTS
{INPORTS: P1 OUTPORTS: P1}
DEVICE: DEVICENAME PC1 CAPACITY 4 TYPE
STORAGE PORTS
{INPORTS: P3: P2 OUTPORTS: P1: P2}}
CONNECTIVITY {MT1: P1 ONTO PC1: P2 DUMMY:
P1 TO PC1: P3 PC1: P1 TO DUMMY: P1}
ROUTE {CONFIGURATION 1 {JOB 1 {STAGE
DEVICE DUMMY CAPACITY 1 PROGRAM 1
GEOMETRY part1.iv SCALE 2 STAGE DEVICE PC1
CAPACITY 1 PROGRAM 1 GEOMETRY part1.iv
SCALE 2 STAGE DEVICE MT1 CAPACITY 1
PROGRAM 1 GEOMETRY part1.iv SCALE 2 STAGE
DEVICE PC1 CAPACITY 1 PROGRAM 3 GEOMETRY
part1.iv SCALE 2 STAGE DEVICE DUMMY
CAPACITY 1 PROGRAM 2 GEOMETRY part1.iv
SCALE 2}
JOB 2{STAGE DEVICE DUMMY CAPACITY 1
PROGRAM 1 GEOMETRY part1.iv SCALE 1 STAGE
DEVICE PC1 CAPACITY 1 PROGRAM 2 GEOMETRY
part1.iv SCALE 0.5 STAGE DEVICE DUMMY
CAPACITY 3 PROGRAM 2 GEOMETRY part1.iv
SCALE 3}}

Configuration file for pallet changer (Storage):

RESOURCE PC1 STORAGE {OWNER: work cell1
SERVERKIND: WorkStation
CAPACITY: 4
PORTS: P1: P2: P3
MODEL: FANUC1998
EQUIPMENTNAME: TRI_SPEC
CONFIGURATIONS: 1
CURRENT_CONFIG: 1
CONFIGURATION: 1
{PROGRAMS {PID: 1 FILENAME: gcode1.dat PID: 2
FILENAME: gcode2.dat }}

Configuration file for the machine tool (Processor):

RESOURCE MT1 PROCESSOR {OWNER: work cell1
SERVERKIND: WorkStation

53

CAPACITY: 1
CONFIGURATIONS: 1
PORTS: P1
MODEL: MITSUBSH79
EQUIPMENTNAME: MILL_END
CURRENT_CONFIG: 1
CONFIGURATION: 1
{PROGRAMS {PID: 1 FILENAME: gcode.dat}}

Configuration file for device driver of pallet changer
(Storage):

DRIVER PC1 TYPE STORAGE {PORTS {INPORTS :
P1 LOCATION : 0000000 LINK : dummy: P2
LOCATION : 0000000 LINK : dummy: P3 LOCATION :
0000000 LINK: dummy OUTPORTS : P1 LOCATION :
0000000 LINK : dummy : P2 LOCATION : 0000000
LINK : dummy : P3 LOCATION : 0000000 LINK :
dummy}
PORTMAPS {PACCEPT P1: BUFFER 1: PID ge11.dat
PACCEPT P2: BUFFER 1: PID ge12.dat PACCEPT P3:
BUFFER 1: PID ge13.dat PACCEPT P1: BUFFER 2: PID
ge21.dat PACCEPT P2: BUFFER 2: PID ge22.dat
PACCEPT P3: BUFFER 2: PID ge23.dat PACCEPT P1:
BUFFER 3: PID ge31.dat PACCEPT P2: BUFFER 3: PID
ge32.dat PACCEPT P3: BUFFER 3: PID ge33.dat
PACCEPT P1: BUFFER 4: PID ge41.dat PACCEPT P2:
BUFFER 4: PID ge42.dat PACCEPT P3: BUFFER 4: PID
ge43.dat PREMOVE P1: BUFFER 1: PID ge11.dat
PREMOVE P2: BUFFER 1: PID ge12.dat PREMOVE
P3: BUFFER 1: PID ge13.dat PREMOVE P1: BUFFER
2: PID ge21.dat PREMOVE P2: BUFFER 2: PID ge22.dat
PREMOVE P3: BUFFER 2: PID ge23.dat PREMOVE
P1: BUFFER 3: PID ge31.dat PREMOVE P2: BUFFER
3: PID ge32.dat PREMOVE P3: BUFFER 3: PID ge33.dat
PREMOVE P1: BUFFER 4: PID ge41.dat PREMOVE
P2: BUFFER 4: PID ge42.dat PREMOVE P3: BUFFER
4: PID ge43.dat ACCEPT P1: BUFFER 1: PID ret1.pgm
ACCEPT P1: BUFFER 2: PID ret2.pgm ACCEPT P1:
BUFFER 3: PID ret3.pgm ACCEPT P1: BUFFER 4: PID
ret4.pgm ACCEPT P2: BUFFER 1: PID ret1.pgm
ACCEPT P2: BUFFER 2: PID ret2.pgm ACCEPT P2:
BUFFER 3: PID ret3.pgm ACCEPT P2: BUFFER 4: PID
ret4.pgm ACCEPT P3: BUFFER 1: PID ret1.pgm
ACCEPT P3: BUFFER 2: PID ret2.pgm ACCEPT P3:
BUFFER 3: PID ret3.pgm ACCEPT P3: BUFFER 4: PID
ret4.pgm REMOVE P1: BUFFER 1: PID ret1.pgm
REMOVE P1: BUFFER 2: PID ret2.pgm REMOVE P1:
BUFFER 3: PID ret3.pgm REMOVE P1: BUFFER 4: PID
ret4.pgm REMOVE P2: BUFFER 1: PID ret1.pgm
REMOVE P2: BUFFER 2: PID ret2.pgm REMOVE P2:
BUFFER 3: PID ret3.pgm REMOVE P2: BUFFER 4: PID
ret4.pgm REMOVE P3: BUFFER 1: PID ret1.pgm
REMOVE P3: BUFFER 2: PID ret2.pgm REMOVE P3:
BUFFER 3: PID ret3.pgm REMOVE P3: BUFFER 4: PID
ret4.pgm}
PROGRAMMAPS {PID 0: PROGRAM gcode.dat PID 1:
PROGRAM gcode.dat STARTPROGRAM: initpgm.dat}
BUFFERS {1 LOCATION: 1.2 -1 0 0 5 0 5 -0.5 -0.5
LINK: palletslide1 2 LOCATION: 1.2 -1 0 0.5 0.5 -0.5 -
0.5 LINK: palletslide2 3 LOCATION: 1.2 -3 0 0.5 0.5 -
0.5 -0.5 LINK: palletslide3 4 LOCATION: 1.2 -3 0 0.5
0.5 -0.5 -0.5 LINK: palletslide4}}

Configuration file for device driver of the machine tool
(Processor):

DRIVER MT1 TYPE PROCESSOR {PORTS
{INPORTS: P1 LOCATION: 1 -1 -1 0.5 0.5 0.5 0.5
LINK: L4 OUTPORTS: P1 LOCATION: 1 -1 -1 0.5 0.5
0.5 0.5 LINK: L4 }
PORTMAPS {ACCEPT P1: PID home.dat REMOVE P1:
PID home.dat }
PROGRAMMAPS {PID 0: PROGRAM gcodemt1.dat
PID 1: PROGRAM gcodemt1.dat PID 2: PROGRAM
gcodemt1.dat STARTP ROGRAM: start.dat}}

Note that the configuration files for basic resources are
very simple while the configuration file for the work cell
is more involved. This is not specific to this test case but
is a more general situation.

B. Case 2

A work cell consisting of two Universal high speed
placement machines (HSP) in serial and a conveyor that
shuttles jobs between the two were modeled using this
architecture (Fig. 3). The work cell supports two different
job types. The two job types are defined in terms of the
devices that they visit.
• Job1 - < HSP1 Conveyor HSP2>
• Job2 - < HSP2 Conveyor HSP1>

Each of the HSPs is modeled as a unit capacity proces-
sor while the conveyor is modeled as a unit capacity
transportation unit. Since there are counter flow jobs in
the system and the conveyor is a shared resource of unit
capacity, there is a potential for deadlocks. The work cell
controller makes sure that such situations don't arise.
Some sample configuration files for the resources and the
work cell are given below.

The device driver files for the HSP and the conveyors
are also listed below. Note the similarity between the con-
figuration file of the Universal machine and the 3-axis
machine tool in the previous example. This is because the
control information for both the machines (unit capacity
processors) is the same. The device driver files for each of
these machines is obviously different and is specific to the
simulator that is used to model the machine. The work cell
configuration file for this system is written down exactly
the same way as explained at the start of this section. No-
tice that the geometry at each stage has been defined as
'user defined' in the route definition. This is a keyword in
the language that means that the geometry of the part at

Fig. 3. Schematic Sketch of the HSP cell.

54

each stage would be redefined by the operation that takes
place at that stage. That is, the part geometry has to be
shared between stages.

Configuration file for the Universal HSP machine

RESOURCE MT1 PROCESSOR {OWNER: work cell1
SERVERKIND: WorkStation3
CAPACITY: 1
CONFIGURATIONS: 1
PORTS: P1
MODEL: MITSUBSH79
EQUIPMENTNAME: MILL_END
CURRENT_CONFIG: 1
CONFIGURATION: 1 {PROGRAMS {PID: 1
FILENAME: gcode.dat }}}

Configuration file for the Conveyor

RESOURCE CON1 TRANSPORT {OWNER: work cell1
SERVERKIND: WorkStation3
CAPACITY: 1
PORTS: P1: P2
MODEL: KOBE_76
EQUIPMENTNAME: T_AGV
CONFIGURATIONS: 1
CURRENT_CONFIG: 1
CONFIGURATION: 1
{PROGRAMS {PID: 1 FILENAME: port1.pgm PID: 2
FILENAME: port2.pgm PID: 3 FILENAME: port3.pgm
PID: 4 FILENAME: port4.pgm }}}

3. CONCLUSIONS

The use of automatic synthesis of supervisory control-
lers allows a high degree of flexibility in the system.
Whenever there has been a significant change in the sys-
tem configuration (when new job routes have been de-
fined or when resources have been added/removed), the
control-laws are recalculated and re-synthesized. We have
suggested hierarchical synthesis as a strategy for rapidly
configuring large systems. In this paper, a methodology
for formally modeling hierarchical resource allocation
systems is developed. A distributed hierarchical control
policy for ensuring deadlock free behavior in such a sys-
tem has been proposed. In paper, we apply this methodol-
ogy to model a FMS setup under the framework of our
architecture.

The software module we have implemented based on
this architecture is highly configurable to suit the needs of
a variety of manufacturing environments. A CORBA
based framework has been used to develop the various
object modules. This gives us the added benefit of being

able to run the application across multi-platforms (operat-
ing systems).

Furthermore, the use of distributed object technology to
implement the system enables us to run each resource
module as a distributed object/server on a computer node.
It is possible to access the control panels associated with
each resource from a separate computer and this allows
the operator to access the system at different control levels
(the resource or the work cell).

Currently, the software implementation of this architec-
ture has been restricted only to the resource and the work
cell level. The higher-level modules and the distributed,
hierarchical controller have not been implemented yet.
Future work includes the development of the higher-level
modules and the distributed controller that ensures dead-
lock free behavior of the entire system. This would help in
realizing a scalable, 'unifying' operating system for manu-
facturing systems

REFERENCES

[1] Adlemo, A., et al. (1997). Models for Specification and Con-

trol of Flexible Manufacturing Systems, Technical Report,
School of Electrical and Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden.

[2] Lawley, M. (1995). Structural Analysis and Control of
Flexible Manufacturing System, PhD Thesis, University of
Illinois at Urbana-Champaign,.

[3] Popp, I. (2005), Consideration regarding model Architecture
for Scalable Flexibility in Manufacturing, International Con-
ference on Manufacturing System, Buletinul Inst. Politehnic
din Iaşi, secţia Construcţii de maşini, Iaşi.

[4] Popp, I. (2006). Consideration regarding a Workcell and
Resource Model implementation in FMS, Annals of the
Oradea University, Fascicle of Management and Techno-
logical Engineering, CD-ROM Edition, Oradea,

[5] Reveliotis, S. (1996). Structural Analysis and Control of
Flexible Manufacturing Systems with a Performance Per-
spective, PhD Thesis, Univ. of Illinois at Urbana-
Champaign.

[6] Wyns, J., Brusse l, H., Valckenaers, L. (1996). WorkStation
Architecture in Holonic Manufacturing Systems, Cirp Jour-
nal on Manufacturing Systems, Vol. 26, 220-231.

Authors:

PhD Eng, Ilie Octavian POPP, Assoc. Prof., "Lucian
Blaga" University of Sibiu, Faculty of Engineering,
E-mail: ilie.popp@ulbsibiu.ro
PhD Eng, Ioan BARSAN, Professor, "Lucian Blaga" Uni-
versity of Sibiu, Faculty of Engineering,
E-mail: ioan.barsan@ulbsibiu.ro,
PhD Eng, Dorin TELEA, Professor, "Lucian Blaga" Uni-
versity of Sibiu, Faculty of Engineering,
E-mail: telea.dorin@email.ro

mailto:ilie.popp@ulbsibiu.ro
mailto:ioan.barsan@ulbsibiu.ro
mailto:telea.dorin@email.ro

