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Abstract: Monte Carlo simulation is a stochastic technique used to solve mathematical problems. The word 
"stochastic" means that it uses random numbers and probability statistics to obtain an answer. Monte 
Carlo methods have been used for centuries, but only in the past several decades has the technique gained 
the status of a full-fledged numerical method capable of addressing the most complex applications. 
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1. INTRODUCTION  
 

Numerical methods that are known as Monte Carlo 
methods can be loosely described as statistical simulation 
methods, where statistical simulation is defined in quite 
general terms to be any method that utilizes sequences of 
random numbers to perform the simulation. The name 
“Monte Carlo” was coined by Metropolis (inspired by 
Ulam’s interest in poker) during the Manhattan Project of 
World War II, because of the similarity of statistical 
simulation to games of chance, and because the capital of 
Monaco was a centre for gambling and similar pursuits. 
  Monte Carlo is now used routinely in many diverse 
fields, from the simulation of complex physical phenom-
ena such as radiation transport in the earth’s atmosphere 
and the simulation of the esoteric sub nuclear processes 
in high energy physics experiments. 

Statistical simulation methods may be contrasted to 
conventional numerical discretization methods, which 
typically are applied to ordinary or partial differential 
equations that describe some underlying physical or 
mathematical system. In many applications of Monte 
Carlo, the physical process is simulated directly, and 
there is no need to even write down the differential equa-
tions that describe the behaviour of the system. The only 
requirement is that the physical (or mathematical) system 
be described by probability density functions.  
 The essential characteristic of Monte Carlo is the use 
of random sampling techniques to arrive at a solution of 
the physical problem. In contrast, a conventional numeri-
cal solution approach would start with the mathematical 
model of the physical system, discretizing the differential 
equations and then solving a set of algebraic equations 
for the unknown state of the system. 
 It is natural to think that Monte Carlo methods are 
used to simulate random, or stochastic, processes, since 
these can be described. However, this coupling is actu-
ally too restrictive because many Monte Carlo applica-
tions have no apparent stochastic content, such as the 
evaluation of a definite integral or the inversion of a 
system of linear equations. As can be seen, the range of 
applications is enormous, from the simulation of galactic 
formation to quantum chromo dynamics to the solution 
of systems of linear equations. 

1.1. Major components of a Monte Carlo Algorithm 
 The primary components of a Monte Carlo simulation 
method include the following:  

 • Probability distribution functions (pdf’s) - the 
physical (or mathematical) system must be described 
by a set of pdf’s.  
• Random number generator - a source of random 
numbers uniformly distributed on the unit interval 
must be available.  
• Sampling rule - a prescription for sampling from the 
specified pdf’s, assuming the availability of random 
numbers on the unit interval, must be given.  
• Scoring (or tallying) - the outcomes must be accu-
mulated into overall tallies or scores for the quantities 
of interest.  

 
1.2. Gauss Distribution 
 The normal (or Gaussian) distribution is one which 
appears in an incredible variety of statistical applications. 
A good reason for this is the central limit theorem. This 
theorem tells us that sums of random variables will, un-
der the appropriate conditions, tend to be approximately 
normally distributed. Even when right conditions are not 
met however the distributions found for many experi-
mentally generated sets of data still tend to have a bell 
shaped curve that often looks quite like that of a normal. 
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Fig. 1. Gauss Distribution. 
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 The mean of the distribution is μ and the variance is 
σ. For example the distribution for x = 50 mm, the vari-

ance 10 mm and 10000 points. 
 The main task is generate a normally distributed ran-
dom variables and to store them in a vector. 
 
 X = 50 Variance = 5 Number of random points = 100 
 function Gauss = GaussDistribution 
 var = 5;  nr_points = 100; 
 y = 50 + sqrt(var) * randn(1, nr_points); 
 

 53.7867   51.0226   52.3861   49.7147    
 50.4205   48.9865   48.6134   45.6948    
 46.8126   50.5993   49.1892   47.7995    
 53.0522   51.9386   49.0408   52.1730    
 47.4432   54.5787   50.0175   51.6698    
 51.2066   48.4531   52.4240   51.4073    
 48.3094   50.5340   47.3094   49.3108    
 46.5611   48.6131   49.5196   52.4194    
 49.6176   48.1881   49.9872   47.3996    
 48.5531   53.5157   50.2911   48.2016    
 49.7709   48.5072   48.4221   49.5078    
 48.9923   50.3149   53.5360   49.3358    
 49.2146   51.9511   51.8363   51.3356    
 50.0886   47.4811   51.5259   49.3920 
 50.3668   48.9416   51.0102   49.3939    
 48.7228   46.8324   47.6366   53.9504    
 54.7131   47.7136   49.7493   50.1406    
 49.0177   54.1032   51.2521   48.6138    
 47.2118   50.2128   50.1485   46.9316    
 51.5095   50.1267   52.9588   49.4801    
 51.1517   48.5421   50.0314   52.7122    
 53.1549   50.1935   55.6916   49.8082    
 52.8774   50.5538   49.2576   54.1237    
 50.6419   49.3980   49.5925   50.7316    
 49.9858   50.1439 
 
2. ABSOLUTE ACCURACY ANALYSIS  
 

2.1. Find absolute accuracy of parallel robots with 
Monte Carlo Simulation 

 The Monte Carlo Simulation method is a combined 
numerical and statistical method for problem solving. 
 The problem has to be formulated as an independent 
random experiment with an input and an output.  

 The input is a list of random numbers with a specific 
distribution.  
 The Monte Carlo simulation consists of many repeti-
tions of the random experiment with a changing random 
number input list. The output of the experiment is also a 
list of values which is statistically evaluated. 
 The basic idea is to perform the direct kinematical 
algorithm for a huge numbers of parameters variations. 
 The choice of the right distribution for parameters 
variation depends on the given task; in this case the 
variation will be for each parameter a Gauss Distribu-
tions. Of course, many other distributions can be used. 
 For the structure from Fig. 2 we have 6 independent 
parameters for each link that mean that we will have       
6 × 6 = 36 vectors with normal distributed values. 
 
 

 

 
 
a 
 
 

 
 

b 
 

 
Fig. 2. Analyzed structure of robot with five articulations: 

a – model; b – kinematic diagram (dof: 2 (x, y), workspace:  
400 × 600 mm2, speed: 4 m/s, pay load: 1 kg). 

 
 Table 1 

Vectors with parameters variation 
 

 A B C α  β  γ  

Link 1 A1 B1 C1 Alfa1 Beta1 Gama1 
Link 2 A2 B2 C2 Alfa2 Beta2 Gama2 
Link 3 A3 B3 C3 Alfa3 Beta3 Gama3 
Link 4 A4 B4 C4 Alfa4 Beta4 Gama4 
Link 5 A5 B5 C5 Alfa5 Beta5 Gama5 
Link 6 A6 B6 C6 Alfa6 Beta6 Gama6 
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 Table 2 
Input parameters 

 

Joint1 = Rotation 
Type = driving joint 

Teta = 90 degree 
A = -150 

B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 

Joint2 = Rotation 
Type = driven joint 

Teta = 0 degree 
A = 300 

B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 

Joint3 = Rotation (Cut joint) 
Type = driven joint 
Teta = 90 degree 

A = 500 
B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 
Joint6 = Rotation 

Type = driving joint 
Teta = 90 degree 

A = 150 
B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 

Joint5 = Rotation 
Type = Driven joint 

Teta = 0 degree 
A = 300 

B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 

Joint4 = Rotation (Cut joint) 
Type = driven joint 
Teta = 90 degree 

A = 500 
B = 0 
C = 0 

Alfa = 0 
Beta = 0 

Gama = 0 
 
 
 

 The next step is to chose and sends the parameters to 
CCD.  

For example: the input values for parameters (Table 
1) are presented in Table 2. 

To find the absolute accuracy of parallel structure the 
algorithm for Monte Carlo Simulation can be computed 
by using the following steps: (Fig. 3) 

Step 1 Read input data about the structure (input the 
desired values of the driving variables; assign 
arbitrary values to the driven variables) 

Step 2 Based on input data and the distribution rules 
create 36 vectors with variation of the pa-
rameters. Once this has been completed then 
we have to define how the parameters will be 
chosen. 

Step 3 Chose another random parameter combination 
then the parameters will be stored in the data 
structure, now we have another structure with 
another position for end effector. 

Step 4 Using the recursion formulae and current value 
of parameters perform the Forward Coordi-
nate Transformation for the new structure. 

Step 5 Compute the error (we must have here a value 
for accepted error as a condition to get the so-
lution) 

Step 6 If we have an error smaller then accepted er-
ror we can consider that as a solution and we 
have to store this in a vector. 

 If the error is still greater then accepted error 
we will apply the minimisation. 

Step 7 At the end we will have 2 vectors, one with 
deviation on x and one with deviation on y. 
 With these two vectors we will compute the next 
values: 
 Dxmed – medium deviation on x 
 Dxmax – maximum deviation on x 
 Dymed – medium deviation on y 
 Dymax – maximum deviation on y 
 Dmed – medium distance between nominal position 
and the position computed after parameter variation. 
 Dmax – maximum distance between nominal position 
and the position computed after parameter variation. 

 We can to count the number of steps needed to 
achieve the target point. 

Step 8 If the number of points is enough we can print 
the results otherwise go to Step 3. 

 
2.2 Absolute accuracy analysis over the entire work-

space 
 

Mesh Analysis over the entire workspace.  The work-
space analysis will be computed by using the following 
steps: 
 

Step 0 Create a mesh surface for the workspace (the 
mesh surface will be in fact two matrices one 
with coordinates on x and another with 
coordinates on y) 

 Step 1 For each point from the mesh surface we 
need to compute the Inverse Kinematical 
algorithm (IKP) and the result will be q1 and 
q2. 

 For some points the solution for IKP will be 
complex that means that the point is out of 
workspace. Where the point is in workspace 
go to Step 3. 

Step 2 Apply the algorithm for Monte Carlo 
Simulation [5]. This time we will store the 
values for Dmed, Dmax, Dxmed, Dxmax, 
Dymed, Dymax and Steps in another matrix. 
Now we have a meshed surface and we know 
the accuracy in each point from the 
workspace. 

Step 3 Create a coloured surface based on accuracy    
matrix.  

 

 Is possible to create many graphics for example: 
medium or maximum accuracy, medium or maximum 
deviation on x for entire workspace, medium or maxi-
mum deviation on y for entire workspace, how many 
steps are needed to find the solution? 
 In Fig. 4 we can see easily how this algorithm works 
and some resuts. 
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Fig. 3. Complete algorithm for Monte Carlo Simulation. 
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Fig. 4. Create workspace analysis. 

3. CONCLUSIONS 
 

 Simulation shall be run, determining the maximum as 
well as the average values of the pose deviation. Running 
these simulations for a huge number of poses over the 
entire workspace the results may be used to determine 
parameters, which variation can be neglected during the 
parameter identification process thus speeding up the 
calibration procedure. 
 This article is intended to determine the influence of 
geometric parameter variation on the absolute accuracy 
of parallel robots. 
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