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Abstract: This paper outlines perspectives and different approaches for describing mechanical behavior 
of cable dynamics. The characteristics of insulator strings in overhead lines during load transposition is 
important for a save and fast dimensioning process. Conclusive simulation results are rooted in an ade-
quate model of the conductor cable. In this paper linear and nonlinear cable models, based on the FEM 
approach are compared to analytical and numerical models based on the equation of vibrating string. 
This comparison of models with different levels of complexity provides valuable insights on the quality of 
results (in this case the force response of cable at the end). All models are implemented, validated by 
bench tests and coupled with a Multi Body Simulation model of the falling insulator string. Results are 
shown and ratings of all presented models are provided. In addition to the problem of load transposition 
in overhead lines, this paper gives advices on simulating cable dynamics in other fields of applications 
like structural engineering, materials handling or mechanical engineering. Thus the paper can help the 
reader to choose the right cable model for simulating a particular problem. 
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1.  INTRODUCTION1 
 

Cables and ropes are essential for various applica-
tions in engineering. For the design and development of 
technologically advanced systems affected by the behav-
ior of cables, extensive analysis and simulations are 
mandatory. Otherwise securing functions in terms of 
external influences (external forces, excitation...) is not 
ensured. 

There are two major categories for classification of 
cables. One is the type of design; the other is the field of 
application. Figure 1 provides an overview of the most 
common cable types. The dimensioning process by form-
ing a quotient of tensile stress at break and the tension 
stress is attended by high coefficients of safety (3 to 14 
see [1, 2]). A reason is the difficult calculation of stresses 
in cables under dynamic conditions. Inaccurate ap-
proaches using static calculations and various factors for 
considering dynamic effects are established. Detailed 
simulations of the dynamic behavior of cables can pro-
vide more accurate results (tensile stress). A numerous-
ness of approaches is known for modelling cable dynam-
ics. This paper gives an overview and demonstrates the 
impact of different cable models using the example of 
load transposition (LT) of overhead lines. 

Load transposition Process. For insulating the con-
ductors from environment, insulator strings are placed 
between conductor and pylon. To avoid black-out or mal-
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function in case of insulator breakage, at least double 
strings are often used. The reasons for breakage are ma-
terial defects, falling rocks, vandalism and branches of 
trees. The design, using double strings, ensures that the 
intact insulator string take over the whole conductor load. 

The process of taking a new equilibrium is called 
load transposition and lasts only about 0.3 seconds. High 
bending stresses in the brittle porcelain insulators caused 
by the angular acceleration of the insulators are charac-
teristic for the process. For a proper dimensioning of the 
insulator strings, numerical simulations (with adequate 
cable models) are very helpful [1, 2]. 

 
2.  APPROACHES FOR CABLE DYNAMICS 

 

The approaches for modelling the dynamics of sag 
flat cables, found in literature, are varying concerning 
their complexness. Figure 2 provides an overview of 
approaches, classified in analytical and numerical meth-
ods referring to cable properties, excitation, nonlinear 
effects and attainable results. Depending on the field of 
application (Fig. 1) and effects to be considered, an ade-
quate approach can be chosen with the help of Table 1. 

The next chapters are describing two different ap-
proaches with different complexity in detail. The first 
approach, based on the equation of the vibrating string, is 
able to deliver results very quick. The second approach, 
based on non-linear FEM, is more sophisticated and can 
handle miscellaneous effects. Also the effort for imple-
mentation and computing times are varying. The impact 
using different approaches are exemplified by load trans-
position of overhead lines (chapter 4). 
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Fig. 1. Classification of cables by design and field of applications (according to VDI 2358). 
 
 
 
 

 
Table 1 

Overview - approaches for cable dynamics  
 

 



 A. Wolfschluckner and D. Jodin / Proceedings in Manufacturing Systems, Vol. 8, Iss. 3, 2013 / 141−146 143 

 

 
Fig. 2. The vibrating string. 

 
2.1. Equation of Vibrating String 

An approach for modelling cable dynamics is using 
the equation of vibrating string (first efforts calculating 
the vibrations of strings were made in the 17th century). 
For solving the equation, analytical and numerical meth-
ods are possible [5]. 

The equations of motion, obtained from Fig. 2, are 
leading to a partial differential equation of second order 
with two independ variables  x and t (position and time). 
Thus the basic equation for the vibrating string (small 
angular displacements) is [5]: 
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The variable c is the longitudinal wave velocity (in-
dex lo) respectively the transversal wave velocity (index 
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Typical values for conductor cables are 4.700 m/s 
(clo) and 85 m/s (ctr). 

The approach of the vibrating string underlies some 
simplifications (Table 1): 
• Sag of cable is neglected. 
• Bending stiffness is neglected. 
• Linear material model. 
• Constant density. 

The following methods for solving of (1) are based 
on the assumption, that longitudinal and transversal vi-
brations are independent (superposition of waves is pos-
sible). 

String equation (infinite length-analytical solu-
tion). Assuming an infinite string, a simplification of 
d’Alemberts solution leads to [6]  
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where the dynamic force dS  in longitudinal direction of 

the cable depends on the velocity Auɺ  of point A (Fig. 4) 

in the direction of x1. The reader may notice that re-
flected waves (e.g. on neighbour pylons) are not consid-
ered. The numerical solution of (1) addresses this issue. 

String equation (infinite length-numerical solu-
tion). Due to the fact that the characteristic of displace-
ment at least at one end of the cable is unknown during 
simulation (the other end is supposed to be fixed), a nu-
merical solution might be applied. Replacing the partial 
derivations in (1) by terms of Taylor series approxima-
tion leads to  
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where j indexes discrete points on the cable, n is the in-
dex of discrete time steps [7]. Equation (4) is stable un-
der the Courant- Friedrichs-Lewy (CFL) condition [8] 

 ( )1/α xtcL ∆∆= , (5) 

 t∆  and 1x∆  are finite differences of time and cable. 

With the displacements nju  and applying a central dif-

ference method the dynamic force dS  follows as: 

 ( )EAxuSd 1/ ∆∆= . (6) 

The impact of considering reflections will be dis-
cussed in chapter 4. 

 
2.2. Non-linear FEM (2-Node Truss Elements) 

In contrary to approaches based on the vibrating 
string, FEM is able to consider different effects such as 
discrete events, sag of cable, and so on (Table 1). FEM 
with truss elements is commonly used for analysing 
structures like bridges or buildings. But also modelling 
cable dynamics is possible (under the premise, that the 
curvature of cable remains relative small during simula-
tion).  

A truss element is a structural member capable of 
transmitting stresses only in the direction normal to the 
cross section. It is assumed that this normal stress is con-
stant over the cross-sectional area. The element (length 
L) is described by two nodes (linear interpolation func-
tions), as shown in Fig. 3 [9]. 

The 2-node truss element in Total Lagrange Formula-
tion (TL) is suitable for large displacements, large rota-
tions and small strains. In Lagrangian incremental analy-
sis approach, the equilibrium of the body at time 

tt ∆+ with reference to time 0=t  (index on the left be-
low) expressed by using the principle of virtual dis-
placements. 

The general matrix equation for dynamic analysis 
with implicit time integration according the TL- formula-
tion reads as follows [9]: 
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Fig. 3. Truss element with interpolation functions. 
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The finite element matrices in equation (7) necessary 
for nonlinear analysis are: 
• Linear strain incremental stiffness matrix KL.. 
• Nonlinear strain (geometric) incremental stiffness 

matrix KNL. 
• Time independent mass matrix Mv. 
• Time independent damping matrix Cv. 
• Vector of the externally applied nodal point loads Rv. 
• Vector of nodal point forces F equivalent to the ele-

ment stresses. 
For solving (7), a nonlinear calculation scheme with 

an implicit time integration method is required. To meet 
these specifications, the Newton-Raphson method with 
time integration (trapezoidal rule) is applied. 

The incremental formulation of the displacements, 
velocities and accelerations are (k is the number of the 
Newton iteration and t∆ the size of time step): 

 ( ) ( ) ( )kkttktt uuu ∆+= −∆+∆+ 1 , (8)  
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Detailed information is provided in [9, 10]. 
 
3.  VALIDATION OF APPROACHES 

 

For validating different cable models, a test bed on 
the  Institute of  Logistics  Engineering  is used. With this  

test bed, the general behavior (not the load transposition 
process) of the oscillating cable is in focus. The installa-
tion ensures a sinusoidal displacement of one end of the 
cable and the measure of the force response (fig. 3). The 
test bed is driven by a servomotor and a cam plate for 
creating a linear movement. 

In Fig. 4 the results of the comparison of measure-
ment and simulation for an excitation in x3 direction are 
shown. The diagrams illustrate the force response of the 
cable in x1-direction. 

The results of the non-linear simulation with 2-node 
truss elements have the best accordance with measure-
ment. Amplitudes and also frequency spectrum (FFT-
analysis in [4]) are matching.  

On the other hand the calculated amplitudes, using 
the model of vibrating string (infinite), are too low. Main 
reasons for the big difference are: 

 

• Sag of cable is neglected in this model. 
• A linear analysis without actualization of cable coor-

dinates. 
 

The string in this model has infinite length (stiffness 
of cable in longitudinal direction is too low). 

So for this special case, the simplified model of the 
vibrating string is not suitable. Nevertheless the situation 
during load transposition of overhead lines is very differ-
ent. Mainly the span-length (approx. 300 m) is much 
longer than on the test bed (15 m). In Chapter 4 this 
problem is analyzed by comparing the impact of different 
cable models on the results of simulating the load trans-
position process. 

 

 

 
 

Fig. 4. Comparison of measurement and simulation. 



 A. Wolfschluckner and D. Jodin / Proceedings in Manufacturing Systems, Vol. 8, Iss. 3, 2013 / 141−146 145 

 

 
 

Fig. 5. Impact of different approaches on the simulation of the LT-process. 

 
4.  SIMULATION OF THE LT- PROCESS 
 

Figure 5 shows the results simulating the LT-Process 
for a configuration with two insulator strings and a trian-
gular spacer. 

Up to 0.125 s after breakage of insulator, the differ-
ence between the force-plots on point A are very small. 
After this point in time, longitudinal wave reflections 
have to be considered. Due the fact that the model based 
on the infinite string doesn´t considers reflections, the 
results achieved by using this approach are differing very 

strong. On the contrary the approach of the vibrating 
string with finite length leads to very high force ampli-
tudes (finite length and negligence of sag). 

The purpose simulating the LT-process is the calcula-
tion of the maximum values of stresses and strains in the 
insulators. Since the maximum values always occur be-
fore the first reflections have an effect, all approaches 
can be used for simulating the LT-process. If a longer 
time frame is of interest (e.g. motion behavior of falling 
insulator strings), than a FEM-approach should be used. 
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 Major points for modelling cables in LT-simulation 
are: 
• Sag of cable has only little influence on maximum 

stress values. In the case of longer a simulation time, 
the sag has significantly more influence. 

• A continues representation of cable (FEM with curvi-
linear elements [11]) has also only little influence on 
the results. 

• In case of large lateral (horizontal) displacements of 
the cable during the LT-process, a nonlinear approach 
is highly recommended. 
The models for simulating the LT-process are vali-

dated by measurements on overhead lines [3, 4, 6]. These 
validated models allow engineers a fast dimensioning 
process and the possibility to perform parameter studies. 
 
5.  SUMMARY AND OUTLOOK 
 

The results shown in chapters 3 and 4 provide valu-
able insights in the modelling of cable dynamics. Not 
only for the special use case of load transposition, but 
also other applications benefit from the findings shown 
in this paper. Generally valid points for modelling cable 
dynamics are: 

 

• The model of the vibrating string is only suitable for 
problems with abrupt and shock-type excitation. The 
simulation time should be short (because of the influ-
ence of wave velocity respectively wave reflections). 

• For analysing a longer period of time, non-linear 
FEM approaches are the best choice. Very important 
is an actualization of nodal coordinates during the 
simulation (minor excitations can lead to relative 
large displacements of the cable). 

• For simulating in-plane (no lateral cable movement) 
cable dynamics with small displacements also linear 
FE-Methods can be used. Linear models have the ad-
vantage of lower computing times, contrary to non-
linear models. 

• In case of using a FE-Method, an adequate numerical 
method for solving (time integration, nonlinear be-
havior) is very important. 
 

In general, nonlinear methods lead to very good re-
sults. But they are suffering from high computing times. 
For that reason, it is necessary to prove which approach 
is suitable for different problems. This paper should give 
advices to take informed decisions. 

 

A further objective is to apply the research results on 
other problems and fields of applications, including in 
particular the field of material handling. In logistics en-
gineering, cables and belts are important machine parts. 
Using adequate approaches solving cable dynamics, 
promises a significant improvement in design processes. 
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