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Abstract: Paper shows the general characteristics of graded materials, their previous industrial use and 
potential use of graded materials in the future. In any case, today the use of graded materials is increas-
ing and moving from the laboratory environment into everyday use. However, the subsequent processing 
of the graded material remains the big unknown, and represents a major challenge for researchers and 
industry around the world. It could be said that the study of machinability of these materials is in its in-
fancy and in this area are many unanswered questions. Machinability problem of graded materials was 
undertaken at the Faculty of Mechanical Engineering in Maribor. After a radical study of the literature 
and potential machining processes of graded materials, we started with the implementation of cutting 
processes on the workpiece. This professional paper presents the first results of the analysis, which will 
be used for further research and machinability study of graded materials. Also prediction of cutting 
forces with neural network by milling functionally graded material was made. In paper first predicted 
cutting forces by milling graded material are presented. 
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1.  INTRODUCTION 
 

Functionally graded materials (FGM) has been in in-
tensive use for last two decades. The first concepts of 
graded materials were conceived in 1984 during the de-
velopment of the Japanese space program. Their main 
feature is the non-homogeneous microstructure through 
whole structure, where every layer has its own micro-
structure and different mechanical properties.  

The most frequently represented scopes of the graded 
materials are [1−6]: 

 

• Aerospace. 
• Military industry. 
• Medicine. 

Optoelectronics.  

 

In any case, by reducing manufacturing costs in the 
future is expected that list of areas where graded materi-
als are used will be much bigger. The greatest advantage 
of graded materials is their surface functional quality. 
However the properties of graded materials also depend 
on the properties of the base material. In most cases, 
hardness of graded material may vary. Surface layer is 
the hardest and hardness usually linear fall to the softest 
zone of material, which is in the region where basic ma-
terial and graded layer are mixed, shown in Fig. 1 [7, 8]. 
______________________ 
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The most common reasons for using graded materials 
are: 

 

• High surface hardness 
• Good surface wear resistance. 
• Different graded structures dampen vibrations. 
 

Special case of graded materials represents partially 
graded materials that do not have distinct layers with 
different chemical compositions, but they have a homo-
geneous chemical composition of the modified micro-
structure. The mechanical properties of these materials 
are comparable with the properties of the graded materi-
als with distinct layers with different chemical composi-
tion [9−11]. 
The largest groups of graded materials are as follows:  
 

• Bioactive graded materials.  
• Tool steel with C, V, Cr and Ti gradients.  
• Materials with self-lubricating ability. 
• Graded materials with high temperature resistant sur-

face layer. 
 
 
 
 

 
 

Fig. 1. Schematic view of functionally graded material. 
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Fig. 2. Properties of graded material. 
 
 

 

2.  PROPERTIES OF FUNCTIONALLY GRADED 
MATERIALS 

 

Graded materials are very innovative product in the 
field of technology. Also very innovative is their produc-
tion. The most common methods of manufacture graded 
materials are as follows: 

 

• The application of thin film coatings (PVD, CVD). 
• Powder metallurgy. 
• Centrifugal method of manufacturing graded mate-

rial. 
• Additive fabrication (SLS, LENS, SLM). 

 

The properties of cladded layers are classified in three 
groups (Fig. 2). Some of those properties may be inter-
related. The wear resistance can, for instance, be affected 
by the hardness, the microstructure, the number of cracks 
and their depth and direction, the bonding between base 
material and substrate, etc. [1, 5, and 6]. 
 
3.  PRODUCTION OF GRADED MATERIALS 

 

Laser cladding is used to improve the surface proper-
ties of metallic machine parts. A wide variety of com-
mercial metallic or ceramic powders is available. Those 
powders were developed for the use in plasma and flame 
spraying. They are also fit for use in laser cladding, be-
cause the intended functional properties are the same. 

A high power laser beam is used to melt metal pow-
der supplied coaxially to the focus of the laser beam 
through a deposition head. The laser beam typically trav-
els through the centre of the head and is focused to a 
small spot by one or more lenses. The x-y table is moved 
in raster fashion to fabricate each layer of the object (Fig. 
3). The head is moved up vertically as each layer is com-
pleted. Metal powders are delivered and distributed 
around the circumference of the head either by gravity, 
or by using a pressurized carrier gas. An inert shroud gas 
is often used to shield the melt pool from atmospheric 
oxygen for better control of properties, and to promote 
layer to layer adhesion by providing better surface wet-
ting. Test parts used in the experiment were produced  

 
 

Fig. 3. Schematic view of LENS process. 
 

Table 1  
Operational work settings on LENS machine Optomec 

LENS 850-R. 
 

Machine settings Value 
Power 580 [W] 
Feed rate 10 [mm/s] 
Amount of filler material 5.8 [g/m] 
Number of layers 4 
Spacing between layers 0.4 
Mark of filler material 1.3343 

 
with the machine Optomec LENS 850-R. Operational 
parameters for the production of test parts on machine 
Optomec LENS 850-R are shown in Table 1. 
 
4. ARTIFICIAL NEURAL NETWORK (ANN) 
 

The principal characteristic of neural networks is that 
they are capable of finding the rule that connects output 
and input parameters, during the process of training. 
When the neural network is trained, it operates also in 
situations with which it did not encounter during the 
process of training [7, 8]. 
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Fig. 4. Neural networks: a − feed-forward back-propagation neural network with 4 hidden layers and 3 outputs; b − feed-forward 
back-propagation neural network with 4 hidden layers and 1 output. 

 
 
 
In this paper, the most commonly used technique; the 

feed-forward back-propagation neural network is adapted 
for the prediction of cutting forces in milling operation. It 
consists of an input layer (where the inputs of the prob-
lem are received), hidden layers (where the relationships 
between the inputs and outputs are determined) and an 
output layer (which emits the output of the problem). 

The input parameters for the neural network were 
depth of cut (ap) and feed rate (f), which is shown in Fig. 
4. The input parameters influenced most on the size of 
cutting force, which is an output parameter of ANN [9, 
10]. 
 

4.1. Topology of neural network 
The number of neurons in the input layer is defined 

by the number of input parameters; the input layer in-
cludes two neurons.  

The number of neurons in the output layer is the same 
as the number of output parameters. In our case this 3 or 
1 output parameters. Output parameters shown in Fig. 
4a) and Fig. 4b) in our case are: 
• components of cutting forces in all three directions of 

the coordinate system (Fx, Fy, Fz). 
• main cutting force R [11]. 

 
In our case two neural networks with different num-

ber of hidden layers were made. Fig. 4a shows the topol-
ogy of first neural network in which output parameters 
were the components of cutting force (Fx, Fy, Fz) in the 
directions of the coordinate system used by the CNC 
machine. Feed-forward back-propagation neural network 
with 4 hidden layers was used [12, 13, 14]. 

Fig. 4b shows the topology of second neural network 
that was used to predict the main cutting force R. Feed-
forward back-propagation neural network with 4 hidden 
layers was used. 
 
5. EXPERIMENT REALIZATION 
 

Milling of workpieces made of graded material was 
on CNC milling machine Heller BEA 01. Material 
GGG70 (hardness 23 HRC) was used as the basic mate-
rial (Fig. 1), while the mixture of the basic material and 
the feed material S-6-5-2 (hardness 65 HRC) was used 
for the making of the graded layer which was 2.5 mm 
thick. 

Cutting parameters used in experiment were: spindle 
speed n = 3000 rpm, feed rate f = 200 mm/min and cut-
ting depth ap = 0.5 mm. An example of the measured 

cutting forces Fx, Fy and Fz by milling graded material 
are shown in Table 2.  

Cutting forces were measured with the cutting forces 
measuring system. Main parts of the cutting force meas-
uring system are: 
• CNC machine with CNC controller. 
• Dynamometer. 
• Charge amplifier. 
• Data acquisition. 
• Software for optimization. 

Measured cutting forces by milling functionally 
graded material were further used to build a neural net-
work which is shown in Fig. 4a) and Fig. 4b). 

Milling on workpieces was performed with carbide 
ball-end mill cutters and end mill cutters manufactured 
by Sandvik Coromant.  

By milling graded materials, advantageous, short and 
broken chips were produced. Large tool wear have nega-
tively influence on the quality of the machined surface. 
After 25 minutes of machine treatment on the CNC ma-
chine, the cutting edge breakage on both cutters ap-
peared. 
 
6.  NEURAL NETWORK TRAINING AND 

RESULTS 
 

For neural network learning, data shown in Table 2 
were used; but 4 samples which were used for testing 
ANN were eliminated. For the purpose of testing the 
learning effectiveness of ANN experiments under the 
serial number 8, 15, 27 and 32 were eliminated. 

Table 3 shows the testing results of ANN; where 
maximum learning error of neural network is 21 %. Re-
sults are shown in Fig 5. This is actually negligible error; 
it means that the difference between actual and predicted 
force is round 50 N by experiment 1. In experiments 
from 25 to 36 much higher forces appears; (in compari-
son with experiments from 1 to 24) the maximum learn-
ing error of ANN in this cases is less than 4 %. 

Best validation performance of ANN used for pre-
dicting main cutting force R is shown in Fig. 6. In this 
case Feed-forward back-propagation neural network with 
4 hidden layers shown in Fig. 4b) was used. 

Training results of ANN for predicting main cutting 
force R are shown in Table 4. Maximum learning error of 
neural network is less than 9 %, which is actually negli-
gible, it means that the difference between actual and 
predicted cutting force is less than 100 N.  
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In experiments from 25 to 36 much higher forces ap-
pears (in comparison with experiments from 1 to 24) the 
maximum learning error of ANN in this cases is less than 
 

8 %. It was actually found out that this prediction does 
not have influence on our CNC machine and milling 
process. 

 

Table 2 
Depth of cut, feed rate and measured forces Fx, Fy, Fz, R 

 

Exp. No. ap [mm] f 
[mm/min] 

Fx [N] Fy [N] Fz [N] R [N] 
1 0.25 10 545.30 148.60 51.30 567.51 
2 0.25 15 561.70 173.10 62.50 591.08 
3 0.25 25 583.90 196.70 69.70 620.07 
4 0.25 50 628.80 211.40 77.90 667.94 
5 0.25 75 694.50 255.70 87.70 745.25 
6 0.25 100 765.10 302.20 98.60 828.51 
7 0.50 10 841.60 305.90 117.50 903.15 
8 0.50 15 893.60 308.60 134.90 954.96 
9 0.50 25 962.00 315.10 156.40 1024.30 
10 0.50 50 1081.00 323.30 180.80 1142.70 
11 0.50 75 1187.40 352.10 207.50 1255.77 
12 0.50 100 1243.60 398.40 267.80 1333.03 
13 0.75 10 1303.70 428.60 302.70 1405.33 
14 0.75 15 1394.70 489.30 365.70 1522.61 
15 0.75 25 1472.20 536.70 403.40 1618.07 
16 0.75 50 1568.80 595.50 443.30 1735.59 
17 0.75 75 1652.90 653.40 521.60 1852.32 
18 0.75 100 1742.80 774.30 615.20 2003.84 
19 1.00 10 1814.20 832.40 705.80 2117.16 
20 1.00 15 1879.30 889.10 794.60 2225.68 
21 1.00 25 1987.20 952.30 856.40 2364.16 
22 1.00 50 1973.80 1023.60 901.30 2399.16 
23 1.00 75 2087.60 1068.70 968.70 2537.43 
24 1.00 100 2165.10 1102.70 1009.10 2630.95 
25 1.50 10 2224.00 1153.60 1085.30 2730.36 
26 1.50 15 2301.80 1204.50 1145.70 2839.32 
27 1.50 25 2397.30 1247.30 1214.30 2962.66 
28 1.50 50 2461.10 1284.30 1287.60 3060.12 
29 1.50 75 2533.90 1311.30 1352.00 3157.22 
30 1.50 100 2642.60 1374.60 1448.40 3312.21 
31 2.00 10 2812.50 1437.20 1584.90 3533.78 
32 2.00 15 3001.80 1489.70 1712.30 3763.24 
33 2.00 25 3138.60 1533.40 1842.70 3949.39 
34 2.00 50 3314.30 1573.60 1958.60 4158.96 
35 2.00 75 3522.40 1638.40 2040.00 4387.85 

36 2.00 100 3785.20 1745.80 2115.60 4674.54 
        

 

 
 

Fig. 5. Results of ANN for predicting Fx, Fy, Fz. 

 

 

Fig. 6. Results of ANN for predicting main cutting force R. 
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Table 3 
Measured and predicted values of cutting forces Fx, Fy, and Fz by using ANN 

 

Exp. No. 
Measured values Predicted values using ANN 

% Error 
Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] 

1 545.30 148.60 51.30 539.36 179.83 45.64 1.09 21.02 11.03 
2 561.70 173.10 62.50 558.87 179.12 57.49 0.50 3.48 8.02 
3 583.90 196.70 69.70 588.70 184.33 68.39 0.82 6.29 1.88 
4 628.80 211.40 77.90 625.94 210.79 76.95 0.46 0.29 1.22 
5 694.50 255.70 87.70 695.14 252.47 87.58 0.09 1.26 0.14 
6 765.10 302.20 98.60 765.14 304.24 96.60 0.01 0.68 2.02 
7 841.60 305.90 117.50 849.00 290.38 128.17 0.88 5.07 9.08 
9 962.00 315.10 156.40 962.56 293.99 159.29 0.06 6.70 1.85 
10 1081.00 323.30 180.80 1083.92 333.49 187.82 0.27 3.15 3.88 
11 1187.40 352.10 207.50 1210.66 376.98 221.24 1.96 7.07 6.62 
12 1243.60 398.40 267.80 1187.96 415.80 227.72 4.47 4.37 14.97 
13 1303.70 428.60 302.70 1301.12 437.34 300.84 0.20 2.04 0.61 
14 1394.70 489.30 365.70 1391.14 491.65 350.03 0.26 0.48 4.29 
16 1568.80 595.50 443.30 1466.33 565.28 426.53 6.53 5.08 3.78 
17 1652.90 653.40 521.60 1649.98 659.07 528.14 0.18 0.87 1.25 
18 1742.80 774.30 615.20 1743.68 765.70 618.17 0.05 1.11 0.48 
19 1814.20 832.40 705.80 1819.23 857.71 741.13 0.28 3.04 5.01 
20 1879.30 889.10 794.60 1885.37 884.08 794.02 0.32 0.57 0.07 
21 1987.20 952.30 856.40 1981.11 959.32 865.33 0.31 0.74 1.04 
22 1973.80 1023.60 901.30 1972.20 1018.66 903.60 0.08 0.48 0.26 
23 2087.60 1068.70 968.70 2092.14 1058.34 961.86 0.22 0.97 0.71 
24 2165.10 1102.70 1009.10 2163.96 1112.23 1008.62 0.05 0.86 0.05 
25 2224.00 1153.60 1085.30 2188.63 1160.11 1081.05 1.59 0.56 0.39 
26 2301.80 1204.50 1145.70 2253.53 1173.15 1132.62 2.10 2.60 1.14 
28 2461.10 1284.30 1287.60 2462.55 1278.98 1292.92 0.06 0.41 0.41 
29 2533.90 1311.30 1352.00 2532.13 1321.45 1344.88 0.07 0.77 0.53 
30 2642.60 1374.60 1448.40 2641.77 1373.83 1447.84 0.03 0.06 0.04 
31 2812.50 1437.20 1584.90 2924.67 1469.79 1657.64 3.99 2.27 4.59 
33 3138.60 1533.40 1842.70 3144.98 1523.56 1832.03 0.20 0.64 0.58 
34 3314.30 1573.60 1958.60 3304.83 1578.51 1960.72 0.29 0.31 0.11 
35 3522.40 1638.40 2040.00 3404.13 1690.78 2060.85 3.36 3.20 1.02 
36 3785.20 1745.80 2115.60 3739.45 1808.50 2195.87 1.21 3.59 3.79 

 
Table 4 

Measured and predicted values of main cutting force R by using ANN. 
 

Exp. No. Measured values R [N] Predicted values using ANN R [N] % Error 
1 567.51 567.02 0.09 
2 591.08 582.66 1.42 
3 620.07 613.65 1.04 
4 667.94 689.83 3.28 
5 745.25 765.04 2.66 
6 828.51 840.25 1.42 
7 903.15 939.36 4.01 
9 1024.30 1008.18 1.57 
10 1142.70 1119.54 2.03 
11 1255.77 1227.38 2.26 
12 1333.03 1332.36 0.05 
13 1405.33 1525.04 8.52 
14 1522.61 1553.62 2.04 
16 1735.59 1742.74 0.41 
17 1852.32 1866.37 0.76 
18 2003.84 1980.95 1.14 
19 2117.16 2174.88 2.73 
20 2225.68 2205.63 0.90 
21 2364.16 2265.29 4.18 
22 2399.16 2403.59 0.18 
23 2537.43 2526.47 0.43 
24 2630.95 2634.44 0.13 
25 2730.36 2794.75 2.36 
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Table 4 (Continuation) 
 

26 2839.32 2826.89 0.44 
28 3060.12 3042.73 0.57 
29 3157.22 3184.61 0.87 
30 3312.21 3314.22 0.06 
31 3533.78 3801.58 7.58 
33 3949.39 3935.32 0.36 
34 4158.96 4167.69 0.21 
35 4387.85 4409.60 0.50 
36 4674.54 4657.97 0.35 

 
Table 5  

Parameters that were used to test and verify the quality of the trained ANN 
 

Exp. 

No. 
ap [mm] 

f  

[mm/min] 

Measured values Predicted values using ANN % Error 
Fx [N] Fy [N] Fz [N] R [N] Fx [N] Fy [N] Fz [N] R [N] Fx Fy Fz R 

8 0.50 15 893.60 308.60 134.90 954.96 895.99 294.40 146.05 962.48 0.27 4.60 8.27 0.79 

15 0.75 25 1472.20 536.70 403.40 1618.07 1472.91 548.97 394.30 1609.61 0.05 2.29 2.26 0.52 

27 1.50 25 2397.30 1247.30 1214.30 2962.66 2346.14 1194.04 1206.59 2890.30 2.13 4.27 0.64 2.44 

32 2.00 15 3001.80 1489.70 1712.30 3763.24 2996.60 1487.61 1714.53 3845.65 0.17 0.14 0.13 2.19 
               

 
 
The quality of learning ANN was tested with data that 

were excluded from the learning base. Table 5 shows the 
data that were used to test and verify the quality of the 
trained ANN. In the table measured values for control of 
predicted data and the calculation of the percentage error 
are shown. The maximum error in the prediction of indi-
vidual components of the cutting forces is less than 9 % 
and the total cutting force error is less than 3 %, which is 
certainly under acceptable limit, that was set as a goal 
before our experiments were implemented. 
 
7.  CONCLUSIONS 
 

The first results of milling very hard material such as 
graded material shows us that the machining of such 
materials is possible. In any case, in the future will be 
even more important to focus on the correct geometry of 
the cutting tool to reduce the size of the cutting forces in 
all three directions of the coordinate system which are at 
the moment very large. 

On the other hand, the prediction of the cutting forces 
proved to be very reliable; the error in predicting cutting 
forces was smaller than 10 %. This is a very reliable 
prediction for the planned cutting force, which allows us 
to operate the machine in a safe area.  

Our wish for the future is to find the suitable cutting 
parameters (cutting speed, feed rate, cutting depth,...) for 
optimal milling of graded material. With this optimal 
cutting parameters we want fully displace the grinding of 
graded material with milling, where material removal is 
greater. 

In any case simulations, optimizations, predicting of 
cutting parameters and cutting experiments of graded 
materials are wished to be performed. Our goal is to in-
troduce milling of graded material into daily production 
and replace grinding with more productive cutting proc-
ess. 
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