3D KINEMATIC FIELDS STUDIES IN MILLING

Wadii YOUSFI ${ }^{1, *}$, Raynald LAHEURTE ${ }^{1}$, Madalina CALAMAZ ${ }^{\mathbf{2}}$, Philippe DARNIS ${ }^{1}$, Olivier CAHUC ${ }^{1}$
${ }^{1)}$ () Université de Bordeaux, I2M, UMR 5295, F-33400 Talence, France.
${ }^{2)}$ Arts et Métiers Paris Tech, I2M, UMR 5295, F-33400 Talence, France.

Abstract

Comparing with other processes, milling and drilling have additional complexities arising from variation of the instantaneous geometric variables in machining and kinematic during operation [1,2]. In this study, the instantaneous variations of the kinematic and geometric cutting parameters are determined for a case of end milling with a milling tool with cutting inserts. The exact position of the insert in the space is determined according to the orientation's angles of the milling insert κ_{r}, γ_{0} and λ_{s} respectively the lead angle, rake angle and cutting edge inclination angle. For each inserts position, the kinematic torsor is determined for two representative points of the cutting edge. The first point is on the radius of the tool and the second is on the linear part of the cutting edge and depends on the depth of cut. The variation of the linear velocity due to the rotation of the tool and the feed rate, affects the cutting and the clearance angles and the instantaneous cutting velocity $V_{c, \text { orth }}$. The instantaneous feed is also determined by a numerical method starting from a geometric representation of the area scanned by the tool. The kinematic study is closed by a sensitivity study of instantaneous variation of cutting velocity in terms of depth of cut a_{p} and feed per tooth f_{z}.

Key words: Milling, kinematic torsor, instantaneous cutting speed, instantaneous advance, sensitivity.

1. INTRODUCTION

Several researches have addressed the study of the position of the cutting edge during milling. Engine and al [1] defined mathematically the position of the cutting edge in a coordinate system linked to the center of cutting inserts. Two forms of cutting inserts were studied: rectangular and triangular convex. Saï and al [2] determine the position vector of the cutting edge for a monobloc tool in the case of a circular interpolation and a linear interpolation. There are not many analytical models about the kinematics study during milling process. Albert and al [3] determined the actions torsor at the tool tip using an experimental approach to highlight the cutting moments and the instantaneous variation of the kinematic parameters.

The present work consists to analytically analyze the three components of velocities determined in different points on the cutting edge taking into account the orientation of the cutting insert. A milling tool with inserts is studied and the cutting edge was divided in two parts: an area corresponding to the tool tip radius and a linear part where two extreme points have been chosen. The results help to analyse:
i) phenomena that may occur during cutting and
ii) tool-material interactions due to a large instantaneous variation of geometric and kinematic parameters.

[^0]
Nomenclature:

R_{0} : Coordinate systems linked to the tool
$R_{1,}, R_{2}, R_{3,} R_{4}$: Coordinate systems linked to the insert.
$P_{s,} P_{f,} P_{r}:$ Planes linked to the insert.
κ_{r} : Cutting edge angle between the ridge plane of the tool P_{s} and the work plane P_{f}.
γ_{0} : rake angle between the cutting face $\left(A_{\gamma}\right)$ and the reference plane P_{r}.
λ_{s} : cutting edge inclination angle between the edge and the reference plane of the tool P_{r}.
O_{0}, P : Tool center and tip of tool.
α_{0}, φ_{0} : Relief angle, Angle of variation.
f_{z}, a_{p} : Feed per tooth, depth of cut.
P_{1}, P_{2} : Points on the tool nose radius and on the linear part of the cutting edge.
$P_{2, \text { inf }}, P_{2, \text { sup }}$: Lower and upper positions on the linear part of the cutting edge.
$x_{p \mathrm{i}}, y_{p i}, x_{p i+1}, y_{p i+1}$: Coordinates of points P_{i} and P_{i+1}. $\Delta_{\theta 1}, \mathcal{C}_{\theta 2}$: Linear equation, equation for a curve.
$t_{2}, \theta, d_{\theta}$: Time required for P_{i+1} to be aligned with P_{i}, rotation angle, angle variation $\left(\theta_{2}-\theta_{1}\right)$.
$h_{m}, h_{m 1}$: Instantaneous feed, instantaneous feed with rotation κ_{r}.
ω, V_{f} Rotation speed, feed velocity.
$V_{x,} V_{y,} V_{z}, V_{c, o r t h}$: Three components of velocity, cutting velocity in orthogonal cutting configuration.
$h_{p 2}(\alpha)$: Linear function.

2. TOOL GEOMETRY DESCRIPTION AND KINEMATIC PARAMETERS

A description of the geometry of the milling tool and its kinematic are presented in this paragraph. Several points on the insert are chosen to determine the influence

Fig. 1. Geometric configuration of the milling tool and Study points on the cutting edge.
of the cutting edge position on the interaction toolmaterial. During a milling operation, the geometric and kinematic cutting parameters of cutting are changing instantaneously during the tool rotation. These parameters will be presented along this paragraph.

2.1. Global tool geometry

Figure 1 shows the global tool geometry. The insert coordinate system $R_{1}\left(P, \overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}}\right)$ rotates relative to the initial coordinate system $R_{0}\left(O_{0}, \overrightarrow{x_{0}}, \overrightarrow{y_{0}}, \overrightarrow{z_{0}}\right)$ linked to the tool center. The distance between O_{0} and P is equal to the tool radius. The rotation speed ω and the feed velocity V_{f} generate the tool path. The insert is oriented in space with three angles κ_{r}, γ_{0} and λ_{s}.

The initial coordinate system $R_{l}\left(P, \overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}}\right)$ is linked to the insert in P and two points P_{1} and P_{2} are defined respectively on the nose radius of the cutting edge and the linear part. Two extreme points on the linear part of the cutting edge are chosen to demonstrate the influence of the position on the velocities. The position of each point is determined by the function $h_{p i}(\alpha)$ which depends on the value of $\alpha \in[0,1]$.

$$
\begin{equation*}
h_{p 2}(\alpha)=\alpha \cdot\left(\frac{a_{p}}{\sin \left(\kappa_{r}\right) \cdot \cos \left(\lambda_{s}\right)}-r_{\varepsilon}\right) \tag{1}
\end{equation*}
$$

2.2. Kinematic parameters of modeling

Figure 2 shows, the variation of velocity components (linked to the insert local coordinate system $\left.\left(P, \overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}}\right)\right)$ in the plane normal to the tool axis. The decomposition of the velocity depends on the feed rate and the rotation velocity of the tool.
$V_{c, o r t h}$ is the cutting speed used in the calculations of the elementary basic model in orthogonal cutting. The rotation and advance movements generate a new cutting plane. This latter plane is oriented relative to the initial coordinate system by φ_{0}, angle which depends on the decomposition of the cutting velocity.

In the milling process, the absolute value of $V_{c, \text { orth }}$ changes from a maximum value for $\theta=-180^{\circ}$, wherein the feed rate is added with the linear velocity $V_{x 1}$, to a minimum value for $\theta=0$ due to the subtraction of the same velocity.

For the different geometric parameters cited in Table 1 , the variation of $V_{x 1}$ in different points of cutting edge is represented in Fig. 3.

Fig. 2. Instantaneous variation of velocity upon rotation of the tool in the plane normal to the axis of the tool.

Fig. 3. Variation of $V_{x l}$ in terms of θ.

3. INSTANTANEOUS VELOCITIES

The speed of each point on the edge of the tool depends on the insert orientation and the radius of tool. R_{0} is an input modeling parameter representing the radial position of the reference tool point (point P). This distance remains constant and all orientations of the tool are relative to this point P.

These coordinates remain constant in any coordinate system related to the insert. Their position relative to the axis of the tool is given by the tool radius R_{0} as presented in Fig. 1.

In this study, an angular position is considered after each rotation of 45° of the tool. For each chosen position, the components of the instantaneous velocities and variations of cutting and clearance angles are determined.

3.1. Kinematic setting

The variation of the cutting edge angle κ_{r} generates the rotation of the coordinate system R_{1} related to the point P of the insert in the reference tool plane (Fig. 5). In the coordinate system R_{2}, the distance of each point of the cutting edge relative to the tool axis depends for its radial position.

For the parameters given in table1, the variation of the difference of velocity $(d v)$ between the extreme points P_{1} and $P_{2 \text {,sup }}$ in terms of depth of cut is presented in Fig. 4.

This variation increase with depth of cut, its value for $\kappa_{r}=45^{\circ}$ passes from $0.07 \mathrm{~m} . \mathrm{s}^{-1}$ to $0.31 \mathrm{~m} . \mathrm{s}^{-1}$. This difference becomes more important for the lower lead angles. The coordinate system R_{3} is the same as R_{2} and

Fig. 4. Variation of the difference of velocity $(d v)$ between the extreme points P_{1} and $P_{2, \text { sup }}$ in terms of a_{p} and κ_{r}

Fig. 5. Setting of the rotations $\kappa_{\mathrm{r}}, \gamma_{0}$ and λ_{s}.
the insert rotates with respect to z_{2} with γ_{0} angle (cutting angle). This modelling was proposed to keep the same configuration of the orthogonal cutting shown in Fig. 2.

The cutting edge inclination angle λ_{s} is due to the rotation of the system coordinate R_{3} linked to the tool tip in the plane P_{s}.

3.2. Kinematic Torsor

The kinematic torsor is determined in different points of the cutting edge and for each position of the insert.

$$
\left[V_{P \in \text { Tool / workpiece }}\right]_{R_{1}}=\left\{\begin{array}{c}
\vec{\Omega}_{(\text {tool / workpiece })_{P}} \tag{2}\\
\vec{V} \\
\left(O_{0} \in \text { tool / workpiece }\right)_{P}
\end{array}\right\}_{R_{1}}
$$

The kinematic torsor in point P in the coordinate R_{4} is obtained by rotations of this torsor from R_{l} to R_{4}.

$$
\begin{gather*}
{\left[\mathrm{v}_{\text {Petool/workpiece }}\right]_{R_{4}}=} \\
\left\{\left[\begin{array}{c}
S\left(\lambda_{s}\right) \cdot C\left(\kappa_{r}\right) \cdot \omega \\
-C\left(\kappa_{r}\right) \cdot \omega \\
-C\left(\lambda_{s}\right) \cdot S\left(\kappa_{r}\right) \cdot \omega
\end{array}\right]\right. \tag{3}\\
\left.\left[\begin{array}{c}
C\left(\lambda_{s}\right) \cdot\left(V_{f} \cdot C(\theta)-R_{0} \cdot \omega\right)+S\left(\lambda_{s}\right) \cdot C\left(\kappa_{r}\right) \cdot V_{f} \cdot S(\theta) \\
S\left(\kappa_{r}\right) \cdot V_{f} \cdot S(\theta) \\
S\left(\lambda_{s}\right) \cdot\left(V_{f} \cdot C(\theta)-R_{0} \cdot \omega\right)-C\left(\lambda_{s}\right) \cdot C\left(\kappa_{r}\right) \cdot V_{f} \cdot S(\theta)
\end{array}\right]\right\}_{R_{4}}
\end{gather*}
$$

with $C=\cos$ and $S=\sin$.
The velocity vector in P_{1} is determined using the method of velocities transport:

Fig. 6. Variation of the angle φ_{0} in terms of a_{p}.
$\vec{V}_{P_{1}, R_{4}}=\vec{V}_{P, R_{4}}+$
$\left[r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot C\left(\gamma_{0}\right) \cdot C\left(\lambda_{s}\right) \cdot S\left(\kappa_{r}\right) \cdot \omega\right)-\left(r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot C\left(\kappa_{r}\right) \cdot \omega\right)$
$-\left(r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot S\left(\lambda_{s}\right) \cdot S\left(\kappa_{r}\right) \cdot \omega\right)-\left(r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot S\left(\gamma_{0}\right) \cdot C\left(\lambda_{s}\right) \cdot S\left(\kappa_{r}\right) \cdot \omega\right)$
$\left(r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot S\left(\gamma_{0}\right) \cdot C\left(\kappa_{r}\right) \cdot \omega\right)+\left(r_{\varepsilon} \cdot\left(\frac{2-\sqrt{2}}{2}\right) \cdot C\left(\gamma_{0}\right) \cdot S\left(\lambda_{s}\right) \cdot S\left(\kappa_{r}\right) \cdot \omega\right)$
Using the same method the velocity components of each point on the linear part of the cutting edge is determined:

$$
\vec{V}_{P_{2}, R_{4}}=\vec{V}_{P, R_{4}}+\left[\begin{array}{c}
-\left(r_{\varepsilon}+h_{p 2}(\alpha)\right) \cdot \cos \left(\kappa_{r}\right) \cdot \omega \tag{5}\\
-\left(r_{\varepsilon}+h_{p 2}(\alpha)\right) \cdot \sin \left(\lambda_{s}\right) \cdot \sin \left(\kappa_{r}\right) \cdot \omega \\
0
\end{array}\right]_{R_{4}}
$$

3.3. Cutting angles analysis

In the orthogonal cutting configuration, the instantaneous variation of the velocities components generates the variation of the cutting and clearance angles by an angle $\varphi_{0}(\theta)$ during the milling operation. Upon rotation of the tool between $-180{ }^{\circ}$ to 0°, the cutting angle increases, in each position and the clearance angle decreases with the same value. The variation of φ_{0} with depth of cut $\left(a_{p}\right)$ is represented in Fig. 6.

The φ_{0} angle in P_{1} does not depend on the depth of cut while its value is very sensitive to this parameter in point P_{2}. For $\theta=-270^{\circ}$, this angle goes from 0.28° to 1.05° in point $P_{2, \text { sup }}$. The variation of cutting angle between the two extremes points on the cutting edge can causes a strain between the different elements of the chip.

3.4. Kinematic results

For the different geometric parameters cited in Table 1, the variation of two components of velocity in the reference R_{4} is determined.

The normal to the insert carried by $\overrightarrow{x_{4}}$ and the tangential component carried by $\overrightarrow{y_{4}}$, are presented as a function of the angle θ (Figs. 7 and 8).

Table 1
Geometric and kinematic parameters

$\boldsymbol{\omega}$ $\left(\right.$ rad. $\left.\mathbf{s}^{-1}\right)$	$\kappa_{r}\left({ }^{\circ}\right)$	$\boldsymbol{\gamma}\left({ }^{\circ}\right)$	$\lambda_{s}\left({ }^{\circ}\right)$	a_{p} $(\mathrm{~mm})$	f_{z} $(\mathrm{~mm})$	R_{0} $(\mathrm{~mm})$
60	45	6	6	2	0.2	25

Fig.7. Instantaneous velocity $V_{x 4}$ variation in the R_{4} coordinate system.

Fig. 8. Instantaneous variation of the $V_{y 4}$ velocity in the R_{4} coordinate system.

For $\theta \in\left[-180^{\circ}, 0\right]$ (tool in contact with work-piece), $V_{x 4}$ decreases during the combined movement of rotation and feed of the tool. The total difference between the maximum and minimum value of this velocity is equal to twice the feed velocity of the tool V_{f}. On the linear portion of the cutting edge, the absolute value of this velocity depends on the position of the point. For $\theta=0$ its value changes from $1.51 \mathrm{~m} . \mathrm{s}^{-1}$ in $P_{2, \text { inf }}$ to $1.61 \mathrm{~m} . \mathrm{s}^{-1}$ in $P_{2, \text { sup }}$.

The rotation of the insert with λ_{s} angle generates the appearance of a new component of velocity carried by $\overrightarrow{y_{4}}$. Its variation for a full rotation of the tool is shown in Fig. 8.

The velocity $V_{y 4}$ is very sensible to the position of each point in zone 2 of the cutting edge. This value passes from $1 \mathrm{~mm} . \mathrm{s}^{-1}$ in $P_{2, \text { inf }}$ to $12 \mathrm{~mm} . \mathrm{s}^{-1}$ in point $P_{2, s u p}$.

The cutting edge inclination angle λ_{s} generates an increase of the velocity carried by $\overrightarrow{z_{4}}$. Its average value rises, in $P_{2, \text { sup }}$, from $0.6 \mathrm{~mm} . \mathrm{s}^{-1}$ before rotation with λ_{s} to a mean value $0.156 \mathrm{~m} . \mathrm{s}^{-1}$ after rotation (Fig. 9).

Fig.9. Instantaneous variation of the velocity $V_{y 4}$ in the R_{4} coordinate system.

Fig. 10. Variation of $V_{c, \text { orrt }}$ with θ and f_{z}.

Fig. 11. Variation of $V_{c, \text { orrh }}$ with θ and a_{p}.

3.5. Sensitivity of velocities variation with geometric parameters

For the parameters given in Table 1, the variation of cutting velocity $V_{c, \text { orth }}$ with θ angle is tested for different values of feed per tooth f_{z} (Fig. 10).

Increasing the feed per tooth causes the increasing of feed velocity V_{f}. This latter variation of V_{f} generates the decreasing of cutting velocity for $\theta=0$ and its increase for $\theta=-180^{\circ}$. The maximum variation of velocity for $f_{z}=$ 0.05 mm to $f_{z}=0.5 \mathrm{~mm}$ is equal to $5 \mathrm{~mm} . \mathrm{s}^{-1}$. This difference is low and the sensitivity of the variation of the cutting velocity to the feed per tooth is negligible.

The variation of cutting velocity $V_{c, \text { orth }}$ in terms of angle θ is tested for different values of depth of cut a_{p} (Fig. 11).

The variation of cutting velocity $V_{c, \text { orth }}$ is very sensitive to depth of cut, its average value passe from $1.52 \mathrm{~m} . \mathrm{s}^{-1}$ for $a_{p}=0.5 \mathrm{~mm}$ to $1.79 \mathrm{~ms}^{-1}$ for $a_{p}=5 \mathrm{~mm}$.

4. CALCULATION OF INSTANTANEOUS FEED

Several studies are interested by the calculation of instantaneous feed, the first work of Martellotti [7, 8] considers the trochoïdal trajectory of tool. H.Z Li et al [9] have proposed a new approach of calculating for a linear trajectory of tool.

The displacement of each point is represented in Fig. 12. To determine the instantaneous feed of cutting, the variation angle d_{θ} between two successive rotations must be determine (in the case of tooth number higher than 1 this variation is determined between two successive tooth).

Fig. 12. Position of P_{i} (rotation i) relative to P_{i-1} (rotation $i-1$).
The position of point P_{i} is determined from the equality between the linear equation $\Delta_{\theta 1}$ with the equation of $\mathcal{C}_{\theta 2}$. $\Delta_{\theta 1}$ corresponds to the first rotation and for an angle θ_{1}. The second equation corresponds to the motion of the second rotation and for an angle θ_{2}.

4.1. Method of calculating the instantaneous feed

The equation for the line $\Delta_{\theta 1}$ in the reference $\left(O_{i-1}, \vec{x}_{i-1}, \vec{y}_{i-1}, \vec{z}_{i-1}\right)$ related to the i-1 rotation is given by:

$$
\begin{equation*}
y_{p_{i-1, \theta_{1}}}=-x_{p_{i-1}} \cdot \tan \left(\theta_{1}\right) . \tag{6}
\end{equation*}
$$

The equation of the curve $\mathcal{C}_{\theta 2}$ in the reference $\left(O_{i-1}, \vec{x}_{i-1}, \vec{y}_{i-1}, \vec{z}_{i-1}\right)$ is given by:

$$
\begin{equation*}
y_{p_{i}, \theta_{2}}=x_{p_{i}} \cdot\left(\frac{V_{f} \cdot t_{2}}{R_{0} \cdot \cos \left(\theta_{2}\right)}-\tan \left(\theta_{2}\right)\right) . \tag{7}
\end{equation*}
$$

The equality between the two equations gives the relation between θ_{l} and θ_{2}, as follows:

$$
\begin{equation*}
\operatorname{tg}\left(\theta_{2}\right)-\operatorname{tg}\left(\theta_{1}\right)=\frac{V_{f} \cdot t_{2}}{R_{0} \cdot \cos \left(\theta_{2}\right)} . \tag{8}
\end{equation*}
$$

Time t_{2} corresponds to the time required for point P_{i} to be aligned with P_{i-1}. This time is decomposed in three terms: time t_{1}, which represent the initial time corresponding to the position P_{i-1} (in this configuration this term is equal to zero), $t_{\text {Itour }}$ which corresponds to one rotation of the tool and the time required for a rotation angle equal to d_{θ}.

$$
\begin{equation*}
t_{2}=\frac{1}{N} \cdot\left(1+\frac{d_{\theta}}{2 \pi}\right) . \tag{9}
\end{equation*}
$$

Table 2
Instantaneous evolution of $\boldsymbol{\theta}_{\mathbf{2}}$ with $\boldsymbol{\theta}_{\mathbf{1}}$

$\boldsymbol{\theta}_{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{2}}$ with $\boldsymbol{f}_{\boldsymbol{z}}=\mathbf{0 . 1}$	$\boldsymbol{\theta}_{\mathbf{2}}$ with $\boldsymbol{f}_{\boldsymbol{z}}=\mathbf{0 . 2}$	$\boldsymbol{\theta}_{\mathbf{2}}$ with $\boldsymbol{f}_{z}=\mathbf{0 . 3}$
-180	-179.78	-179.55	-179.32
-202.5	-202.29	-202.06	-201.86
-225	-224.84	-224.67	-224.52
-247.5	-247.41	-247.33	-247.24
-270	-269.99	-269.99	-269.99
-292.5	-292.59	-292.68	-292.76
-315	-315.17	-315.34	-315.48
-337.5	$-337,71$	-337.91	-338.14
-360	-360.23	-360.46	-360.69

Fig.13. Variation of d_{θ} with θ.

Fig. 14. Change of instantaneous feed h_{m} depending on θ for different values of f_{z}.

The equation (8) is solved numerically to determine for each rotation angle given θ_{1} the angle θ_{2}. Table 2 present the instantaneous evolution of θ_{2} in terms of θ_{1} for three feed per tooth.

The variation of $d_{\theta}\left(d_{\theta}=\left\|\theta_{2}\right\|-\left\|\theta_{1}\right\|\right)$ in terms of θ is presented in Fig. 13 for different values of feed per tooth f_{z}. The value of d_{θ} is negative for θ between -180° and -270° and positive, for θ between -270° and -360°.

The instantaneous feed $\left(h_{m}\right)$, for each insert angular position, is determined from the equations of motion (6 and 7). The general form of the instantaneous feed is:

$$
\begin{equation*}
h_{m}=\sqrt{\left(x_{p_{i}}-x_{p_{i-1}}\right)^{2}+\left(y_{p_{i}}-y_{p_{i-1}}\right)^{2}} . \tag{10}
\end{equation*}
$$

After simplification and with limited development near 0 of $\cos \left(d_{\theta}\right)$ and $\sin \left(d_{\theta}\right)$ the instantaneous feed becomes:

$$
\begin{equation*}
h_{m}=\sqrt{\left(R_{0} \cdot d_{\theta}\right)^{2}+\left(V_{f} \cdot t_{2}\left(d_{\theta}\right)\right)^{2}-2 \cdot R_{0} \cdot V_{f} \cdot t_{2} \cdot \cos \left(\theta_{1}\right) \cdot d_{\theta}} . \tag{11}
\end{equation*}
$$

4.2. Analysis

For a tool radius of 25 mm and an angular velocity of $60 \mathrm{rad} . \mathrm{s}^{-1}$, the variation of the instantaneous feed h_{m} with θ, for different feed per tooth, is shown in Fig. 14.

The instantaneous feed increases with the feed per tooth and its maximum value is equal to f_{z}. The instantaneous feed also depends on the insert orientation. The lead angle κ_{r} causes the variation of its value after the rotation and it becomes:

$$
\begin{equation*}
h_{m 1}=\sin \left(\kappa_{r}\right) h_{m} \tag{12}
\end{equation*}
$$

Fig. 15. Instantaneous variation of the $V_{y 3}$ velocity in the \mathcal{R}_{3} coordinate system.

Fig.16. Variation of the velocity V_{y} with λ_{s}.

5. DISCUSSION

The instantaneous variations of cutting variables affect the kinematic behavior of chip and physics workpiece material behavior. 3D interactions may occur in each cutting zone during milling operation. Each insert orientation generates variation of one or more cutting parameters. Indeed the rotation κ_{r} generates a small change in V_{y} (Fig. 15) which does not affect the kinematics of cutting. Along edge of insert, the velocity component V_{y} depends on the position of the considered point.

After rotation λ_{s}, the velocity $V_{y 4}$ increases starting by the tip to the point $P_{2, \text { sup }}$. This increasing generates a variation of the strain and the strain rate on the chip width and therefore the appearance of areas sheared more than others. If we consider the case of a rigid body, this speed difference causes the rotation of chip. The sense of velocity V_{y} depends on the sign of angle λ_{s}. For a negative cutting edge inclination angle is positive (carried by $\overrightarrow{y_{4}}$) in $P_{2, \text { sup }}$. Its sense becomes negative (carried by $-\overrightarrow{y_{4}}$) for the positive cutting edge inclination angle (Fig. 16).

This non-uniform velocity distribution on the rake face can create, when chips are sliding, significant torques. The increasing of the absolute value of velocity carried by $\overrightarrow{z_{4}}$ generates a supplementary sliding of the chip carried by the cutting edge.

7. CONCLUSIONS

In this work a kinematic study during the milling process is presented. The first part of the article was devoted to the presentation of modeling data, the tool
geometry and the standard orientation angles of the insert.

The second part treated influence of the kinematics during cutting process on the instantaneous variation of the kinematic parameters (different components of velocity) and geometric parameters (instantaneous feed, cutting angles and clearance angle). From this last study, several interpretations are deduced:

- The rotation and advance movements of the tool generate a new cutting plane with cutting speed $V_{c, \text { orrh }}$. Its value changes from a maximum value for $\theta=-$ 180° to a minimum value for $\theta=0$.
- The instantaneous variation of the velocities components generates the variation of the cutting and clearance angles during the milling operation.
- The rotation of the insert with λ_{s} angle generates the appearance of a new component of velocity carried by $\overrightarrow{y_{4}}$. This velocity is very sensible to the position of each point in zone 2 of the cutting edge. The sense of velocity V_{y} depends on the sign of angle λ_{s}.
- The cutting edge inclination angle λ_{s} generates an increase of the velocity carried by $\overrightarrow{z_{4}}$.
To determine the results of a 3D model of milling (cutting forces, tangential forces and cutting moments) an elementary model of cutting must be used. Data from this model are instantaneous parameters determined along this study, this last step consist to enter this data in the elementary model taking into account the interaction 3 D when cutting.

REFERENCES

[1] F. Dargnat, Ph. Darnis, O. Cahuc, Analytical modelling of cutting phenomena improvements with a view to drilling modelling, International Journal of Machining and Machinability of Materials, Vol. 5, 2009, pp. 176-206.
[2] G.Albert, R. Laheurte, J-Y K'Nevez, Ph. Darnis, O. Cahuc, Experimental milling moment model in orthogonal cutting condition: to an accurate energy balance, The International Journal of Advanced Manufacturing Technology, Vol. 55, 2011, pp. 843-854.
[3] Norme AFNOR, Grandeur de base pour la coupe et la rectification (Basic greatness of the cutting and the rectification), Paris, 1993.
[4] S. Engin, Y. Altintas, Mechanics and dynamics of general milling cutters. Part II: inserted cutters, International Journal of Machine Tools \& Manufacture, Vol. 41, 2001, pp. 2213-2231.
[5] L Saï, W. Bouzid, A. Zghal, Chip thickness analysis for different tool motions for adaptive feed rate, Journal of Materials Processing Technology, Vol. 204, 2008, pp. 213-220.
[6] G.Albert, Identification et modélisation du torseur des actions de coupe en Fraisage (Identification and modeling of the torsor of actions cutting in milling), thesis in University of Bordeaux $1, \mathrm{~N}^{\circ}$ of order: 4152, 2010.
[7] M.E. Martellotti, An Analysis of the Milling Process, Transactions of ASME, Vol. 63, 1941, p. 667.
[8] M.E. Martellotti, An Analysis of the Milling Process. Part II: Down Milling, Transactions of ASME, Vol. 67, 1945, p. 233.
[9] H.Z. Li, K. Liu, X.P. Li, A new method for determining the undeformed chip thickness in milling. Journal of Materials Processing Technology. Vol. 13, 2001, pp. 378-384.

[^0]: *Corresponding author: I2M - IUT Bordeaux,
 15 rue Naudet CS 10207
 33175 GRADIGNAN Cedex-France,
 Tel.: +33-5-56-84-79-77;
 E-mail addresses: wadii.yousfi@u-bordeaux.fr (W. Yousfi)

